Skip to content

Instantly share code, notes, and snippets.

View WittmannF's full-sized avatar
🇧🇷

Fernando Marcos Wittmann WittmannF

🇧🇷
View GitHub Profile
@WittmannF
WittmannF / google_scholar_auto_save.js
Created September 29, 2024 18:33
Google Scholar Auto Save Script - Script designed to automate the process of saving articles from Google Scholar
// Function to automate saving process with dynamic reading list selection
function saveArticles(readingListId) {
// Find all the "Save" buttons
const saveButtons = document.querySelectorAll('a.gs_or_sav');
saveButtons.forEach((saveButton, index) => {
setTimeout(() => {
// Click the "Save" button
saveButton.click();
@WittmannF
WittmannF / Python_macOS.gitignore
Last active April 28, 2022 20:16
Gitignore on Python for MacOS users
# General
.DS_Store
.AppleDouble
.LSOverride
# Icon must end with two \r
Icon
# Thumbnails
._*
--1
SELECT *
FROM "olist_order_payments_dataset"
WHERE payment_type='voucher'
OR payment_type='boleto'
--2
SELECT *, product_length_cm*product_height_cm*product_width_cm volume
FROM "olist_products_dataset"
LIMIT 5
@WittmannF
WittmannF / sortgs.py
Last active March 14, 2021 23:22
Sorting google search results by the number of citations
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Original Repository with up to date version: https://github.com/WittmannF/sort-google-scholar
This code creates a database with a list of publications data from Google
Scholar.
The data acquired from GS is Title, Citations, Links and Rank.
It is useful for finding relevant papers by sorting by the number of citations
This example will look for the top 100 papers related to the keyword,
<link rel="stylesheet" type="text/css" href="https://cdn.rawgit.com/bmabey/pyLDAvis/files/ldavis.v1.0.0.css">
<div id="ldavis_el65140446592215944742620371"></div>
<script type="text/javascript">
var ldavis_el65140446592215944742620371_data = {"mdsDat": {"x": [-0.13990785077723894, -0.09679313042303961, 0.08372094501590253, 0.07604489996546725, 0.08866863335149071, -0.01173349713258175], "y": [0.02244036859154854, 0.013060650645922876, 0.1393068438230911, -0.08369764087875763, -0.019555346123243667, -0.07155487605856131], "topics": [1, 2, 3, 4, 5, 6], "cluster": [1, 1, 1, 1, 1, 1], "Freq": [24.220427827520453, 20.28266275869824, 19.98643568178107, 14.374536641380327, 10.845324205247051, 10.290612885372857]}, "tinfo": {"Term": ["week", "difficul", "classroom", "act", "oth", "rul", "mood", "repetit", "irrit", "inappropry", "talk", "behavy", "hopeless", "mot", "pleas", "adult", "task", "impuls", "childr", "psychomot", "thing", "hand", "anxy", "ment", "wav", "rock", "body", "skin", "distress", "compuls", "quie
# envolveu a combinação de encoding e o separador:
url_bernardo = 'https://raw.githubusercontent.com/beloureiro/Planning/main/DB11FB06-1447-11EB-AD05-1866DA94328D.csv'
df = pd.read_csv(url_bernardo, sep=';', encoding='latin')

Solution: Deploy an Azure Machine Learning Model

Part 1: Configure deployment settings

  1. Create a new Automated ML run

Requires Changes

5 specifications require changes

Hello student,

Well done in your first submission! 👏 👏 A few minor changes are still required in order to meet our rubric. Keep doing this great job!

Cheers,

import re
PATTERN = '(.*), (.*) - (.*): [bB]om dia'
db = re.findall(PATTERN, txt)