Skip to content

Instantly share code, notes, and snippets.

@WittmannF
Last active March 14, 2021 23:22
Show Gist options
  • Save WittmannF/1b7ce190d10f629904b922801c6293d8 to your computer and use it in GitHub Desktop.
Save WittmannF/1b7ce190d10f629904b922801c6293d8 to your computer and use it in GitHub Desktop.
Sorting google search results by the number of citations
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Original Repository with up to date version: https://github.com/WittmannF/sort-google-scholar
This code creates a database with a list of publications data from Google
Scholar.
The data acquired from GS is Title, Citations, Links and Rank.
It is useful for finding relevant papers by sorting by the number of citations
This example will look for the top 100 papers related to the keyword,
so that you can rank them by the number of citations
As output this program will plot the number of citations in the Y axis and the
rank of the result in the X axis. It also, optionally, export the database to
a .csv file.
"""
import requests, os, datetime, argparse
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
import pandas as pd
from time import sleep
import warnings
# Solve conflict between raw_input and input on Python 2 and Python 3
import sys
if sys.version[0]=="3": raw_input=input
# Default Parameters
KEYWORD = 'machine learning' # Default argument if command line is empty
NRESULTS = 100 # Fetch 100 articles
CSVPATH = '.' # Current folder
SAVECSV = True
SORTBY = 'Citations'
PLOT_RESULTS = False
STARTYEAR = None
now = datetime.datetime.now()
ENDYEAR = now.year # Current year
DEBUG=False # debug mode
# Websession Parameters
GSCHOLAR_URL = 'https://scholar.google.com/scholar?start={}&q={}&hl=en&as_sdt=0,5'
YEAR_RANGE = '' #&as_ylo={start_year}&as_yhi={end_year}'
#GSCHOLAR_URL_YEAR = GSCHOLAR_URL+YEAR_RANGE
STARTYEAR_URL = '&as_ylo={}'
ENDYEAR_URL = '&as_yhi={}'
ROBOT_KW=['unusual traffic from your computer network', 'not a robot']
def get_command_line_args():
# Command line arguments
parser = argparse.ArgumentParser(description='Arguments')
parser.add_argument('--kw', type=str, help="""Keyword to be searched. Use double quote followed by simple quote to search for an exact keyword. Example: "'exact keyword'" """)
parser.add_argument('--sortby', type=str, help='Column to be sorted by. Default is by the columns "Citations", i.e., it will be sorted by the number of citations. If you want to sort by citations per year, use --sortby "cit/year"')
parser.add_argument('--nresults', type=int, help='Number of articles to search on Google Scholar. Default is 100. (carefull with robot checking if value is too high)')
parser.add_argument('--csvpath', type=str, help='Path to save the exported csv file. By default it is the current folder')
parser.add_argument('--notsavecsv', action='store_true', help='By default results are going to be exported to a csv file. Select this option to just print results but not store them')
parser.add_argument('--plotresults', action='store_true', help='Use this flag in order to plot the results with the original rank in the x-axis and the number of citaions in the y-axis. Default is False')
parser.add_argument('--startyear', type=int, help='Start year when searching. Default is None')
parser.add_argument('--endyear', type=int, help='End year when searching. Default is current year')
parser.add_argument('--debug', action='store_true', help='Debug mode. Used for unit testing. It will get pages stored on web archive')
# Parse and read arguments and assign them to variables if exists
args, _ = parser.parse_known_args()
keyword = KEYWORD
if args.kw:
keyword = args.kw
nresults = NRESULTS
if args.nresults:
nresults = args.nresults
csvpath = CSVPATH
if args.csvpath:
csvpath = args.csvpath
save_csv = SAVECSV
if args.notsavecsv:
save_csv = False
sortby = SORTBY
if args.sortby:
sortby=args.sortby
plot_results = False
if args.plotresults:
plot_results = True
start_year = STARTYEAR
if args.startyear:
start_year=args.startyear
end_year = ENDYEAR
if args.endyear:
end_year=args.endyear
debug = DEBUG
if args.debug:
debug = True
return keyword, nresults, save_csv, csvpath, sortby, plot_results, start_year, end_year, debug
def get_citations(content):
out = 0
for char in range(0,len(content)):
if content[char:char+9] == 'Cited by ':
init = char+9
for end in range(init+1,init+6):
if content[end] == '<':
break
out = content[init:end]
return int(out)
def get_year(content):
for char in range(0,len(content)):
if content[char] == '-':
out = content[char-5:char-1]
if not out.isdigit():
out = 0
return int(out)
def setup_driver():
from selenium import webdriver
print('Loading...')
chrome_options = webdriver.ChromeOptions()
chrome_options.add_argument('--headless')
chrome_options.add_argument('--no-sandbox')
chrome_options.add_argument('--disable-dev-shm-usage')
driver = webdriver.Chrome('chromedriver', options=chrome_options)
return driver
from PIL import Image
def print_screen(driver):
driver.save_screenshot('screenshot.png')
image = Image.open("screenshot.png")
image.show()
def get_author(content):
for char in range(0,len(content)):
if content[char] == '-':
out = content[2:char-1]
break
return out
def get_element(driver, xpath, attempts=5, _count=0):
'''Safe get_element method with multiple attempts'''
try:
element = driver.find_element_by_xpath(xpath)
return element
except Exception as e:
if _count<attempts:
sleep(1)
get_element(driver, xpath, attempts=attempts, _count=_count+1)
else:
print("Element not found")
def get_content_with_selenium(url):
if 'driver' not in globals():
global driver
driver = setup_driver()
driver.get(url)
# Get element from page
el = get_element(driver, "/html/body")
c = el.get_attribute('innerHTML')
if any(kw in el.text for kw in ROBOT_KW):
print_screen(driver)
raw_input("Solve captcha manually and press enter here to continue...")
el = get_element(driver, "/html/body")
c = el.get_attribute('innerHTML')
return c.encode('utf-8')
def main():
# Get command line arguments
keyword, number_of_results, save_database, path, sortby_column, plot_results, start_year, end_year, debug = get_command_line_args()
# Create main URL based on command line arguments
if start_year:
GSCHOLAR_MAIN_URL = GSCHOLAR_URL + STARTYEAR_URL.format(start_year)
else:
GSCHOLAR_MAIN_URL = GSCHOLAR_URL
if end_year != now.year:
GSCHOLAR_MAIN_URL = GSCHOLAR_MAIN_URL + ENDYEAR_URL.format(end_year)
if debug:
GSCHOLAR_MAIN_URL='https://web.archive.org/web/20210314203256/'+GSCHOLAR_URL
# Start new session
session = requests.Session()
#headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36'}
# Variables
links = []
title = []
citations = []
year = []
author = []
rank = [0]
# Get content from number_of_results URLs
for n in range(0, number_of_results, 10):
#if start_year is None:
url = GSCHOLAR_MAIN_URL.format(str(n), keyword.replace(' ','+'))
if debug:
print("Opening URL:", url)
#else:
# url=GSCHOLAR_URL_YEAR.format(str(n), keyword.replace(' ','+'), start_year=start_year, end_year=end_year)
print("Loading next {} results".format(n+10))
page = session.get(url)#, headers=headers)
c = page.content
if any(kw in c.decode('ISO-8859-1') for kw in ROBOT_KW):
print("Robot checking detected, handling with selenium (if installed)")
try:
c = get_content_with_selenium(url)
except Exception as e:
print("No success. The following error was raised:")
print(e)
# Create parser
soup = BeautifulSoup(c, 'html.parser')
# Get stuff
mydivs = soup.findAll("div", { "class" : "gs_r" })
for div in mydivs:
try:
links.append(div.find('h3').find('a').get('href'))
except: # catch *all* exceptions
links.append('Look manually at: '+url)
try:
title.append(div.find('h3').find('a').text)
except:
title.append('Could not catch title')
try:
citations.append(get_citations(str(div.format_string)))
except:
warnings.warn("Number of citations not found for {}. Appending 0".format(title[-1]))
citations.append(0)
try:
year.append(get_year(div.find('div',{'class' : 'gs_a'}).text))
except:
warnings.warn("Year not found for {}, appending 0".format(title[-1]))
year.append(0)
try:
author.append(get_author(div.find('div',{'class' : 'gs_a'}).text))
except:
author.append("Author not found")
rank.append(rank[-1]+1)
# Delay
sleep(0.5)
# Create a dataset and sort by the number of citations
data = pd.DataFrame(list(zip(author, title, citations, year, links)), index = rank[1:],
columns=['Author', 'Title', 'Citations', 'Year', 'Source'])
data.index.name = 'Rank'
# Add columns with number of citations per year
data['cit/year']=data['Citations']/(end_year + 1 - data['Year'])
data['cit/year']=data['cit/year'].round(0).astype(int)
# Sort by the selected columns, if exists
try:
data_ranked = data.sort_values(by=sortby_column, ascending=False)
except Exception as e:
print('Column name to be sorted not found. Sorting by the number of citations...')
data_ranked = data.sort_values(by='Citations', ascending=False)
print(e)
# Print data
print(data_ranked)
# Plot by citation number
if plot_results:
plt.plot(rank[1:],citations,'*')
plt.ylabel('Number of Citations')
plt.xlabel('Rank of the keyword on Google Scholar')
plt.title('Keyword: '+keyword)
plt.show()
# Save results
if save_database:
data_ranked.to_csv(os.path.join(path,keyword.replace(' ','_')+'.csv'), encoding='utf-8') # Change the path
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment