Last active
June 21, 2019 19:14
-
-
Save Wrzlprmft/1d58ed1ec7f45049b922c849649f5cba to your computer and use it in GitHub Desktop.
Benchmark Python Integrators
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from numpy.random import choice, uniform | |
from time import process_time | |
from scipy.integrate import ode, solve_ivp, odeint | |
from scipy.integrate._ivp.ivp import METHODS | |
from jitcode import jitcode, y | |
from symengine import sin | |
solver_ode = "dopri5" | |
solver_ivp = "RK45" | |
# Context manager for timing | |
class timer(object): | |
def __init__(self,name): | |
self.name = name | |
def __enter__(self): | |
self.start = process_time() | |
def __exit__(self,*args): | |
end = process_time() | |
duration = end-self.start | |
print("%s took %.5f s" % (self.name,duration)) | |
# The actual test | |
def test_scenario(name,fun,initial,times,rtol,atol): | |
print(40*"-",name,40*"-",sep="\n") | |
with timer("ode (%s)"%solver_ode): | |
I = ode(fun) | |
I.set_integrator(solver_ode,rtol=rtol,atol=atol,nsteps=10**8) | |
I.set_initial_value(initial,0.0) | |
result = np.vstack(I.integrate(time) for time in times) | |
assert I.successful() | |
inv_fun = lambda y,t: fun(t,y) | |
with timer("odeint with suboptimal function (LSODA)"): | |
result = odeint( | |
func=inv_fun, | |
y0=initial, t=[0.0]+list(times), | |
rtol=rtol, atol=atol, | |
mxstep=10**8 | |
) | |
with timer("solve_ivp (%s)"%solver_ivp): | |
I = solve_ivp( | |
fun, | |
t_span=(0,times[-1]), t_eval=times, | |
y0=initial, | |
method=solver_ivp, rtol=rtol, atol=atol | |
) | |
result = I.y | |
assert I.status != -1 | |
with timer("solve_ivp (%s) with dense_output"%solver_ivp): | |
I = solve_ivp( | |
fun, | |
t_span=(0,times[-1]), | |
y0=initial, | |
method=solver_ivp, rtol=rtol, atol=atol, | |
dense_output=True | |
) | |
result = np.vstack(I.sol(time) for time in times) | |
assert I.status != -1 | |
with timer("%s with dense output"%solver_ivp): | |
I = METHODS[solver_ivp]( | |
fun=fun, | |
y0=initial, t0=0.0, t_bound=times[-1], | |
rtol=rtol, atol=atol | |
) | |
def solutions(): | |
for time in times: | |
while I.t < time: | |
I.step() | |
yield I.dense_output()(time) | |
result = np.vstack(solutions()) | |
assert I.status != "failed" | |
with timer("%s with manual resetting"%solver_ivp): | |
I = METHODS[solver_ivp]( | |
fun=fun, | |
y0=initial, t0=0.0, t_bound=times[-1], | |
rtol=rtol, atol=atol | |
) | |
def solutions(): | |
for time in times: | |
I.t_bound = time | |
I.status = "running" | |
while I.status == "running": | |
I.step() | |
yield I.y | |
result = np.vstack(solutions()) | |
assert I.status != "failed" | |
# Using compiled functions to make things faster | |
def get_compiled_function(f): | |
dummy = jitcode(f,verbose=False) | |
dummy.compile_C() | |
return dummy.f | |
# The actual scenarios | |
test_scenario( | |
name = "two coupled FitzHugh–Nagumo oscillators", | |
fun = get_compiled_function([ | |
y(0)*(-0.025794-y(0))*(y(0)-1.0)-y(1)+0.128*(y(2)-y(0)), | |
0.0065*y(0)-0.02*y(1), | |
y(2)*(-0.025794-y(2))*(y(2)-1.0)-y(3)+0.128*(y(0)-y(2)), | |
0.0135*y(2)-0.02*y(3) | |
]), | |
initial = np.array([1.,2.,3.,4.]), | |
times = 2000+np.arange(0,100000,10), | |
rtol = 1e-5, | |
atol = 1e-8, | |
) | |
n, c, q = 100, 3.0, 0.2 | |
A = choice( [1,0], size=(n,n), p=[q,1-q] ) | |
omega = uniform(-0.5,0.5,n) | |
def kuramotos_f(): | |
for i in range(n): | |
coupling_sum = sum( | |
sin(y(j)-y(i)) | |
for j in range(n) | |
if A[j,i] | |
) | |
yield omega[i] + c/(n-1)*coupling_sum | |
test_scenario( | |
name = "random network of Kuramoto oscillators", | |
fun = get_compiled_function(kuramotos_f), | |
initial = uniform(0,2*np.pi,n), | |
times = range(1,10001,10), | |
rtol = 1e-13, | |
atol = 1e-6, | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment