Created
November 17, 2018 04:48
-
-
Save XinDongol/d17507b63646de419792b167cb65ed17 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import matplotlib as mpl | |
import matplotlib.pyplot as plt | |
from math import sqrt | |
%matplotlib inline | |
import seaborn as sns | |
#sns.set_palette(sns.color_palette("cubehelix")) | |
sns.set_palette(sns.color_palette("coolwarm",9)) | |
config = tf.ConfigProto( | |
device_count = {'GPU': 0} | |
) | |
sess = tf.Session(config=config) | |
def scale_tanh(x, x_scale, y_scale): | |
# scale tanh alone x-axis and y-axis | |
return (y_scale*tf.tanh(x_scale*x)) | |
def move_scaled_tanh(x, x_scale, y_scale, x_range, x_move, y_move): | |
# move the scaled tanh along x-axis and y-axis | |
return tf.clip_by_value(scale_tanh(x+x_move, x_scale, y_scale ),-0.5*x_range,0.5*x_range)+y_move | |
#* \ | |
#tf.to_float((x+x_move)>=-0.5*x_range) *\ | |
#tf.to_float((x+x_move)<0.5*x_range) | |
def tanh_appro(x, x_scale, y_scale, k, delta): | |
y=0 | |
#for i in range(1,2**k): | |
y += move_scaled_tanh(x, x_scale, y_scale, delta, (-1+0.5)*delta, (0.5)*delta) | |
delta2 = 0.1 + delta | |
y_scale2 = (0.5*delta2)/tf.tanh(x_scale*0.5*delta2) | |
y += move_scaled_tanh(x, x_scale, y_scale2, delta2, -0.5*delta2-delta, (0.5)*delta2) | |
#i=1 | |
#y = move_scaled_tanh(x, x_scale, y_scale, delta, (-i+0.5)*delta, (0.5)*delta) | |
return y | |
def quantize(x, k, x_scale): | |
delta = float(1./(2**k-1.)) | |
y_scale = (0.5*delta)/tf.tanh(x_scale*0.5*delta) | |
#print(delta,minv,maxv) | |
@tf.custom_gradient | |
def _quantize(x): | |
return tanh_appro(x, x_scale, y_scale, k, delta), lambda dy: dy | |
return _quantize(x) | |
from mpl_toolkits.axes_grid.axislines import SubplotZero | |
fig = plt.figure(figsize=(6.9, 6.9*0.9) ) # for one column | |
ax = SubplotZero(fig, 111) | |
fig.add_subplot(ax) | |
for direction in ["xzero", "yzero"]: | |
ax.axis[direction].set_axisline_style("-|>") | |
ax.axis[direction].set_visible(True) | |
for direction in ["left", "right", "bottom", "top"]: | |
ax.axis[direction].set_visible(False) | |
plt.rcParams['image.cmap'] = 'Blues' | |
fa = quantize | |
bit = 2 | |
#plt.plot(sess.run(x),sess.run(fa(x,bit,50000000)), alpha=1, linewidth=2) | |
plt.xlim(-0.1,0.85) | |
plt.ylim(-0.1,0.85) | |
plt.tick_params(labelsize=50) | |
plt.xticks([0,0.2,0.4,0.6,0.8], ['','0.2','0.4','0.6','0.8']) | |
plt.yticks([0,0.2,0.4,0.6,0.8], ['','0.2','0.4','0.6','0.8']) | |
x = tf.range(-0.1,1.5,0.01) | |
plt.plot(sess.run(x),sess.run(x), linestyle='--', label='y=x', alpha=1, linewidth=2, ) | |
x = tf.range(0,1,0.01) | |
plt.plot(sess.run(x),sess.run(fa(x,bit,3)),label='b=3', alpha=0.99) | |
plt.plot(sess.run(x),sess.run(fa(x,bit,5)),label='b=5', alpha=0.99) | |
plt.plot(sess.run(x),sess.run(fa(x,bit,10)),label='b=10', alpha=0.99) | |
plt.plot(sess.run(x),sess.run(fa(x,bit,15)),label='b=15', alpha=0.99) | |
plt.plot(sess.run(x),sess.run(fa(x,bit,20)),label='b=20', alpha=0.99) | |
plt.plot(sess.run(x),sess.run(fa(x,bit,30)),label='b=30', alpha=0.99) | |
plt.plot(sess.run(x),sess.run(fa(x,bit,45)),label='b=45', alpha=0.99) | |
plt.plot(sess.run(x),sess.run(fa(x,bit,1000)),label='b=1000', alpha=1, linewidth=2) | |
#plt.plot(sess.run(x),sess.run(fa(x,4,500)),label='4-bit', alpha=0.5) | |
#plt.title('Forward') | |
#plt.tight_layout() | |
plt.tight_layout() | |
#plt.grid() | |
plt.legend(bbox_to_anchor=(1, 1),ncol=5) | |
plt.savefig('./warm_bin_grad.pdf') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment