Last active
November 11, 2022 23:02
-
-
Save XinyueZ/1a9fc50bde93bd88536026c8665f3ecd to your computer and use it in GitHub Desktop.
PixelRNNs Many-To-Many
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
initializer=keras.initializers.he_uniform | |
#@title Encoder | |
def create_encoder(input_shape): | |
inputs = keras.layers.Input(shape=input_shape) | |
x = keras.layers.Conv1D(filters=HIDDEN_SIZE, | |
kernel_size=4, | |
strides=1, | |
input_shape=input_shape, | |
kernel_initializer=initializer, | |
bias_initializer=initializer, | |
)(inputs) | |
x = keras.layers.BatchNormalization()(x) | |
x = keras.layers.Activation("relu")(x) | |
y = keras.layers.AvgPool1D(pool_size=4, strides=1)(x) | |
encoder = keras.Model(inputs=[inputs], outputs=[y], name="encoder") | |
return encoder, y.shape | |
encoder, encoded_shape = create_encoder(image_flatten.shape) | |
#@title Decoder | |
def create_decoder(input_shape): | |
inputs = keras.layers.Input(shape=input_shape) | |
x = keras.layers.Bidirectional(keras.layers.LSTM( | |
units=HIDDEN_SIZE, | |
return_sequences=True, | |
kernel_initializer=initializer, | |
recurrent_initializer=initializer, | |
bias_initializer=initializer))(inputs) | |
x = keras.layers.LSTM(units=HIDDEN_SIZE, | |
return_sequences=True, | |
kernel_initializer=initializer, | |
recurrent_initializer=initializer, | |
bias_initializer=initializer)(x) | |
x = keras.layers.Flatten(dtype='float32')(x) | |
y = keras.layers.BatchNormalization()(x) | |
decoder = keras.Model(inputs=[inputs], outputs=[y], name="decoder") | |
return decoder, y.shape | |
decoder, decoded_shape=create_decoder(encoded_shape[1:]) | |
#@title Predictor | |
def create_predictor(input_shape): | |
inputs = keras.layers.Input(shape=input_shape) | |
x = keras.layers.Dense(input_size, | |
kernel_initializer=initializer, | |
bias_initializer=initializer)(inputs) | |
x = keras.layers.BatchNormalization()(x) | |
x = keras.layers.Activation("relu")(x) | |
y = keras.layers.Activation("tanh")(x) | |
predictor = keras.Model(inputs=[inputs], outputs=[y], name="linear_predictor") | |
return predictor, y.shape | |
predictor, predictor_shape=create_predictor(decoded_shape[1:]) | |
#@title Ensemble model | |
inputs = keras.layers.Input(image_flatten.shape) | |
enc_dec_prd=predictor(decoder(encoder(inputs))) | |
model = keras.Model(inputs=[inputs], outputs=[enc_dec_prd], name="pixelRNN") | |
model.summary() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment