Created
October 11, 2014 13:44
-
-
Save XinyueZ/2d305d1f17ed52b9de42 to your computer and use it in GitHub Desktop.
GO: resize image.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| // Copyright 2011 The Go Authors. All rights reserved. | |
| // Use of this source code is governed by a BSD-style | |
| // license that can be found in the LICENSE file. | |
| package resize | |
| import ( | |
| "image" | |
| "image/ycbcr" | |
| ) | |
| // Resize returns a scaled copy of the image slice r of m. | |
| // The returned image has width w and height h. | |
| func Resize(m image.Image, r image.Rectangle, w, h int) image.Image { | |
| if w < 0 || h < 0 { | |
| return nil | |
| } | |
| if w == 0 || h == 0 || r.Dx() <= 0 || r.Dy() <= 0 { | |
| return image.NewRGBA64(w, h) | |
| } | |
| switch m := m.(type) { | |
| case *image.RGBA: | |
| return resizeRGBA(m, r, w, h) | |
| case *ycbcr.YCbCr: | |
| if m, ok := resizeYCbCr(m, r, w, h); ok { | |
| return m | |
| } | |
| } | |
| ww, hh := uint64(w), uint64(h) | |
| dx, dy := uint64(r.Dx()), uint64(r.Dy()) | |
| // The scaling algorithm is to nearest-neighbor magnify the dx * dy source | |
| // to a (ww*dx) * (hh*dy) intermediate image and then minify the intermediate | |
| // image back down to a ww * hh destination with a simple box filter. | |
| // The intermediate image is implied, we do not physically allocate a slice | |
| // of length ww*dx*hh*dy. | |
| // For example, consider a 4*3 source image. Label its pixels from a-l: | |
| // abcd | |
| // efgh | |
| // ijkl | |
| // To resize this to a 3*2 destination image, the intermediate is 12*6. | |
| // Whitespace has been added to delineate the destination pixels: | |
| // aaab bbcc cddd | |
| // aaab bbcc cddd | |
| // eeef ffgg ghhh | |
| // | |
| // eeef ffgg ghhh | |
| // iiij jjkk klll | |
| // iiij jjkk klll | |
| // Thus, the 'b' source pixel contributes one third of its value to the | |
| // (0, 0) destination pixel and two thirds to (1, 0). | |
| // The implementation is a two-step process. First, the source pixels are | |
| // iterated over and each source pixel's contribution to 1 or more | |
| // destination pixels are summed. Second, the sums are divided by a scaling | |
| // factor to yield the destination pixels. | |
| // TODO: By interleaving the two steps, instead of doing all of | |
| // step 1 first and all of step 2 second, we could allocate a smaller sum | |
| // slice of length 4*w*2 instead of 4*w*h, although the resultant code | |
| // would become more complicated. | |
| n, sum := dx*dy, make([]uint64, 4*w*h) | |
| for y := r.Min.Y; y < r.Max.Y; y++ { | |
| for x := r.Min.X; x < r.Max.X; x++ { | |
| // Get the source pixel. | |
| r32, g32, b32, a32 := m.At(x, y).RGBA() | |
| r64 := uint64(r32) | |
| g64 := uint64(g32) | |
| b64 := uint64(b32) | |
| a64 := uint64(a32) | |
| // Spread the source pixel over 1 or more destination rows. | |
| py := uint64(y-r.Min.Y) * hh | |
| for remy := hh; remy > 0; { | |
| qy := dy - (py % dy) | |
| if qy > remy { | |
| qy = remy | |
| } | |
| // Spread the source pixel over 1 or more destination columns. | |
| px := uint64(x-r.Min.X) * ww | |
| index := 4 * ((py/dy)*ww + (px / dx)) | |
| for remx := ww; remx > 0; { | |
| qx := dx - (px % dx) | |
| if qx > remx { | |
| qx = remx | |
| } | |
| sum[index+0] += r64 * qx * qy | |
| sum[index+1] += g64 * qx * qy | |
| sum[index+2] += b64 * qx * qy | |
| sum[index+3] += a64 * qx * qy | |
| index += 4 | |
| px += qx | |
| remx -= qx | |
| } | |
| py += qy | |
| remy -= qy | |
| } | |
| } | |
| } | |
| return average(sum, w, h, n*0x0101) | |
| } | |
| // average convert the sums to averages and returns the result. | |
| func average(sum []uint64, w, h int, n uint64) image.Image { | |
| ret := image.NewRGBA(w, h) | |
| for y := 0; y < h; y++ { | |
| for x := 0; x < w; x++ { | |
| i := y*ret.Stride + x*4 | |
| j := 4 * (y*w + x) | |
| ret.Pix[i+0] = uint8(sum[j+0] / n) | |
| ret.Pix[i+1] = uint8(sum[j+1] / n) | |
| ret.Pix[i+2] = uint8(sum[j+2] / n) | |
| ret.Pix[i+3] = uint8(sum[j+3] / n) | |
| } | |
| } | |
| return ret | |
| } | |
| // resizeYCbCr returns a scaled copy of the YCbCr image slice r of m. | |
| // The returned image has width w and height h. | |
| func resizeYCbCr(m *ycbcr.YCbCr, r image.Rectangle, w, h int) (image.Image, bool) { | |
| var verticalRes int | |
| switch m.SubsampleRatio { | |
| case ycbcr.SubsampleRatio420: | |
| verticalRes = 2 | |
| case ycbcr.SubsampleRatio422: | |
| verticalRes = 1 | |
| default: | |
| return nil, false | |
| } | |
| ww, hh := uint64(w), uint64(h) | |
| dx, dy := uint64(r.Dx()), uint64(r.Dy()) | |
| // See comment in Resize. | |
| n, sum := dx*dy, make([]uint64, 4*w*h) | |
| for y := r.Min.Y; y < r.Max.Y; y++ { | |
| Y := m.Y[y*m.YStride:] | |
| Cb := m.Cb[y/verticalRes*m.CStride:] | |
| Cr := m.Cr[y/verticalRes*m.CStride:] | |
| for x := r.Min.X; x < r.Max.X; x++ { | |
| // Get the source pixel. | |
| r8, g8, b8 := ycbcr.YCbCrToRGB(Y[x], Cb[x/2], Cr[x/2]) | |
| r64 := uint64(r8) | |
| g64 := uint64(g8) | |
| b64 := uint64(b8) | |
| // Spread the source pixel over 1 or more destination rows. | |
| py := uint64(y-r.Min.Y) * hh | |
| for remy := hh; remy > 0; { | |
| qy := dy - (py % dy) | |
| if qy > remy { | |
| qy = remy | |
| } | |
| // Spread the source pixel over 1 or more destination columns. | |
| px := uint64(x-r.Min.X) * ww | |
| index := 4 * ((py/dy)*ww + (px / dx)) | |
| for remx := ww; remx > 0; { | |
| qx := dx - (px % dx) | |
| if qx > remx { | |
| qx = remx | |
| } | |
| qxy := qx * qy | |
| sum[index+0] += r64 * qxy | |
| sum[index+1] += g64 * qxy | |
| sum[index+2] += b64 * qxy | |
| sum[index+3] += 0xFFFF * qxy | |
| index += 4 | |
| px += qx | |
| remx -= qx | |
| } | |
| py += qy | |
| remy -= qy | |
| } | |
| } | |
| } | |
| return average(sum, w, h, n), true | |
| } | |
| // resizeRGBA returns a scaled copy of the RGBA image slice r of m. | |
| // The returned image has width w and height h. | |
| func resizeRGBA(m *image.RGBA, r image.Rectangle, w, h int) image.Image { | |
| ww, hh := uint64(w), uint64(h) | |
| dx, dy := uint64(r.Dx()), uint64(r.Dy()) | |
| // See comment in Resize. | |
| n, sum := dx*dy, make([]uint64, 4*w*h) | |
| for y := r.Min.Y; y < r.Max.Y; y++ { | |
| pix := m.Pix[(y-m.Rect.Min.Y)*m.Stride:] | |
| for x := r.Min.X; x < r.Max.X; x++ { | |
| // Get the source pixel. | |
| p := pix[(x-m.Rect.Min.X)*4:] | |
| r64 := uint64(p[0]) | |
| g64 := uint64(p[1]) | |
| b64 := uint64(p[2]) | |
| a64 := uint64(p[3]) | |
| // Spread the source pixel over 1 or more destination rows. | |
| py := uint64(y-r.Min.Y) * hh | |
| for remy := hh; remy > 0; { | |
| qy := dy - (py % dy) | |
| if qy > remy { | |
| qy = remy | |
| } | |
| // Spread the source pixel over 1 or more destination columns. | |
| px := uint64(x-r.Min.X) * ww | |
| index := 4 * ((py/dy)*ww + (px / dx)) | |
| for remx := ww; remx > 0; { | |
| qx := dx - (px % dx) | |
| if qx > remx { | |
| qx = remx | |
| } | |
| qxy := qx * qy | |
| sum[index+0] += r64 * qxy | |
| sum[index+1] += g64 * qxy | |
| sum[index+2] += b64 * qxy | |
| sum[index+3] += a64 * qxy | |
| index += 4 | |
| px += qx | |
| remx -= qx | |
| } | |
| py += qy | |
| remy -= qy | |
| } | |
| } | |
| } | |
| return average(sum, w, h, n) | |
| } | |
| // Resample returns a resampled copy of the image slice r of m. | |
| // The returned image has width w and height h. | |
| func Resample(m image.Image, r image.Rectangle, w, h int) image.Image { | |
| if w < 0 || h < 0 { | |
| return nil | |
| } | |
| if w == 0 || h == 0 || r.Dx() <= 0 || r.Dy() <= 0 { | |
| return image.NewRGBA64(w, h) | |
| } | |
| curw, curh := r.Dx(), r.Dy() | |
| img := image.NewRGBA(w, h) | |
| for y := 0; y < h; y++ { | |
| for x := 0; x < w; x++ { | |
| // Get a source pixel. | |
| subx := x * curw / w | |
| suby := y * curh / h | |
| r32, g32, b32, a32 := m.At(subx, suby).RGBA() | |
| r := uint8(r32 >> 8) | |
| g := uint8(g32 >> 8) | |
| b := uint8(b32 >> 8) | |
| a := uint8(a32 >> 8) | |
| img.SetRGBA(x, y, image.RGBAColor{r, g, b, a}) | |
| } | |
| } | |
| return img | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment