Last active
December 30, 2021 10:03
-
-
Save YCAyca/0eefae1945c63591c1fe2e36c6fe1bae to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# import necessary layers | |
from tensorflow.keras.layers import Input, Conv2D , Dropout, MaxPool2D, Flatten, Dense | |
from tensorflow.keras import Model | |
from tensorflow.keras.preprocessing.image import ImageDataGenerator | |
from tensorflow.keras.regularizers import l2 | |
import tensorflow as tf | |
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint | |
import os | |
import matplotlib.pyplot as plt | |
import sys | |
from tensorflow.keras.callbacks import CSVLogger | |
MODEL_FNAME = "trained_model.h5" | |
base_dir = "dataset" | |
tmp_model_name = "tmp.h5" | |
INPUT_SIZE = 224 | |
BATCH_SIZE = 16 | |
physical_devices = tf.config.list_physical_devices() | |
print("DEVICES : \n", physical_devices) | |
print('Using:') | |
print('\t\u2022 Python version:',sys.version) | |
print('\t\u2022 TensorFlow version:', tf.__version__) | |
print('\t\u2022 tf.keras version:', tf.keras.__version__) | |
print('\t\u2022 Running on GPU' if tf.test.is_gpu_available() else '\t\u2022 GPU device not found. Running on CPU') | |
count = 0 | |
previous_acc = 0 | |
if not os.path.exists(MODEL_FNAME): | |
""" Create VGG Model""" | |
# input | |
input = Input(shape =(INPUT_SIZE,INPUT_SIZE,3)) | |
weight_initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.01, seed=None) | |
bias_initializer=tf.keras.initializers.Zeros() | |
# 1st Conv Block | |
x = Conv2D (filters =64, kernel_size =3, padding ='same', activation='relu',kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(input) | |
x = Conv2D (filters =64, kernel_size =3, padding ='same', activation='relu',kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
x = MaxPool2D(pool_size =2, strides =2, padding ='same')(x) | |
# 2nd Conv Block | |
x = Conv2D (filters =128, kernel_size =3, padding ='same', activation='relu',kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
x = Conv2D (filters =128, kernel_size =3, padding ='same', activation='relu',kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
x = MaxPool2D(pool_size =2, strides =2, padding ='same')(x) | |
# 3rd Conv block | |
x = Conv2D (filters =256, kernel_size =3, padding ='same', activation='relu',kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
x = Conv2D (filters =256, kernel_size =3, padding ='same', activation='relu',kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
x = Conv2D (filters =256, kernel_size =3, padding ='same', activation='relu',kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
x = MaxPool2D(pool_size =2, strides =2, padding ='same')(x) | |
# 4th Conv block | |
x = Conv2D (filters =512, kernel_size =3, padding ='same', activation='relu',kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
x = Conv2D (filters =512, kernel_size =3, padding ='same', activation='relu',kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
x = Conv2D (filters =512, kernel_size =3, padding ='same', activation='relu',kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
x = MaxPool2D(pool_size =2, strides =2, padding ='same')(x) | |
# 5th Conv block | |
x = Conv2D (filters =512, kernel_size =3, padding ='same', activation='relu',kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
x = Conv2D (filters =512, kernel_size =3, padding ='same', activation='relu',kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
x = Conv2D (filters =512, kernel_size =3, padding ='same', activation='relu',kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
x = MaxPool2D(pool_size =2, strides =2, padding ='same')(x) | |
# Fully connected layers | |
x = Flatten()(x) | |
x = Dropout(0.5)(x) | |
x = Dense(units = 4096, activation ='relu', kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
x = Dropout(0.5)(x) | |
x = Dense(units = 4096, activation ='relu', kernel_initializer=weight_initializer,kernel_regularizer=l2(0.00005),bias_initializer=bias_initializer)(x) | |
output = Dense(units = 2, activation ='softmax')(x) | |
# creating the model | |
model = Model (inputs=input, outputs =output) | |
m = model | |
m.save(tmp_model_name) | |
del m | |
tf.keras.backend.clear_session() | |
model.summary() | |
""" Prepare the Dataset for Training""" | |
train_dir = os.path.join(base_dir, 'train') | |
val_dir = os.path.join(base_dir, 'validation') | |
train_batches = ImageDataGenerator(rescale = 1 / 255.).flow_from_directory(train_dir, | |
target_size=(INPUT_SIZE,INPUT_SIZE), | |
shuffle=True, | |
seed=42, | |
batch_size=BATCH_SIZE) | |
val_batches = ImageDataGenerator(rescale = 1 / 255.).flow_from_directory(val_dir, | |
target_size=(INPUT_SIZE,INPUT_SIZE), | |
shuffle=True, | |
seed=42, | |
batch_size=BATCH_SIZE) | |
""" Train """ | |
class CustomLearningRateScheduler(tf.keras.callbacks.Callback): | |
def __init__(self, schedule): | |
super(CustomLearningRateScheduler, self).__init__() | |
self.schedule = schedule | |
def on_epoch_end(self, epoch, logs=None): | |
if not hasattr(self.model.optimizer, "lr"): | |
raise ValueError('Optimizer must have a "lr" attribute.') | |
# Get the current learning rate from model's optimizer. | |
lr = float(tf.keras.backend.get_value(self.model.optimizer.learning_rate)) | |
# Call schedule function to get the scheduled learning rate. | |
# keys = list(logs.keys()) | |
# print("keys",keys) | |
val_acc = logs.get("val_binary_accuracy") | |
scheduled_lr = self.schedule(lr, val_acc) | |
# Set the value back to the optimizer before this epoch starts | |
tf.keras.backend.set_value(self.model.optimizer.lr, scheduled_lr) | |
def learning_rate_scheduler(lr, val_acc): | |
global count | |
global previous_acc | |
if val_acc == previous_acc: | |
# print("acc ", val_acc, "previous acc ", previous_acc) | |
count += 1 | |
else: | |
count = 0 | |
if count >= 5: | |
print("acc is the same for 10 epoch, learnin rate decreased by /10") | |
count = 0 | |
lr /= 10 | |
print("new learning rate:", lr) | |
previous_acc = val_acc | |
return lr | |
#compile the model by determining loss function Binary Cross Entropy, optimizer as SGD | |
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.0000001, momentum=0.9), | |
loss=tf.keras.losses.BinaryCrossentropy(), | |
metrics=[tf.keras.metrics.BinaryAccuracy()], | |
sample_weight_mode=[None]) | |
early_stopping = EarlyStopping(monitor='val_loss', patience=10) | |
checkpointer = ModelCheckpoint(filepath=MODEL_FNAME, verbose=1, save_best_only=True) | |
csv_logger = CSVLogger('log.csv', append=True, separator=' ') | |
history=model.fit(train_batches, | |
validation_data = val_batches, | |
epochs = 100, | |
verbose = 1, | |
shuffle = True, | |
callbacks = [checkpointer,early_stopping,CustomLearningRateScheduler(learning_rate_scheduler),csv_logger]) | |
""" Plot the train and validation Loss """ | |
plt.plot(history.history['loss']) | |
plt.plot(history.history['val_loss']) | |
plt.title('model loss') | |
plt.ylabel('loss') | |
plt.xlabel('epoch') | |
plt.legend(['train', 'validation'], loc='upper left') | |
plt.show() | |
""" Plot the train and validation Accuracy """ | |
plt.plot(history.history['binary_accuracy']) | |
plt.plot(history.history['val_binary_accuracy']) | |
plt.title('model accuracy') | |
plt.ylabel('accuracy') | |
plt.xlabel('epoch') | |
plt.legend(['train', 'validation'], loc='upper left') | |
plt.show() | |
print("End of Training") | |
else: | |
""" Test """ | |
test_dir = os.path.join(base_dir, 'test') | |
test_batches = ImageDataGenerator(rescale = 1 / 255.).flow_from_directory(test_dir, | |
target_size=(INPUT_SIZE,INPUT_SIZE), | |
class_mode='categorical', | |
shuffle=False, | |
seed=42, | |
batch_size=1) | |
model = tf.keras.models.load_model(MODEL_FNAME) | |
model.summary() | |
# Evaluate on test data | |
scores = model.evaluate(test_batches) | |
print("metric names",model.metrics_names) | |
print(model.metrics_names[0], scores[0]) | |
print(model.metrics_names[1], scores[1]) | |
tf.keras.backend.clear_session() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment