Last active
December 30, 2021 10:33
-
-
Save YCAyca/61bec4b4e673d1ba8810e32b513e5bc2 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Created on Wed Dec 29 20:56:04 2021 | |
@author: aktas | |
""" | |
# import necessary layers | |
from tensorflow.keras.preprocessing.image import ImageDataGenerator | |
from tensorflow.keras.regularizers import l2 | |
import tensorflow as tf | |
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint | |
import os | |
import matplotlib.pyplot as plt | |
import sys | |
from tensorflow.keras.callbacks import CSVLogger | |
from tensorflow.keras.applications import vgg16, imagenet_utils | |
from tensorflow.keras.layers import Dense, Flatten | |
from tensorflow.keras.models import Model | |
MODEL_FNAME = "pretrained_model.h5" | |
tmp_model_name = "tmp.h5" | |
base_dir = "dataset" | |
INPUT_SIZE = 224 | |
BATCH_SIZE = 16 | |
physical_devices = tf.config.list_physical_devices() | |
print("DEVICES : \n", physical_devices) | |
print('Using:') | |
print('\t\u2022 Python version:',sys.version) | |
print('\t\u2022 TensorFlow version:', tf.__version__) | |
print('\t\u2022 tf.keras version:', tf.keras.__version__) | |
print('\t\u2022 Running on GPU' if tf.test.is_gpu_available() else '\t\u2022 GPU device not found. Running on CPU') | |
count = 0 | |
previous_acc = 0 | |
if not os.path.exists(MODEL_FNAME): | |
base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(INPUT_SIZE,INPUT_SIZE,3)) | |
m = base_model | |
m.save(tmp_model_name) | |
del m | |
tf.keras.backend.clear_session() | |
print("Number of layers in the base model: ", len(base_model.layers)) | |
base_model.trainable = False | |
last_output = base_model.output | |
x = Flatten()(last_output) | |
x = Dense(2, activation='softmax')(x) | |
model = Model(inputs=[base_model.input], outputs=[x]) | |
model.summary() | |
""" Prepare the Dataset for Training""" | |
train_dir = os.path.join(base_dir, 'train') | |
val_dir = os.path.join(base_dir, 'validation') | |
train_batches = ImageDataGenerator(rescale = 1 / 255.).flow_from_directory(train_dir, | |
target_size=(INPUT_SIZE,INPUT_SIZE), | |
shuffle=True, | |
seed=42, | |
batch_size=BATCH_SIZE) | |
val_batches = ImageDataGenerator(rescale = 1 / 255.).flow_from_directory(val_dir, | |
target_size=(INPUT_SIZE,INPUT_SIZE), | |
shuffle=True, | |
seed=42, | |
batch_size=BATCH_SIZE) | |
""" Train """ | |
class CustomLearningRateScheduler(tf.keras.callbacks.Callback): | |
def __init__(self, schedule): | |
super(CustomLearningRateScheduler, self).__init__() | |
self.schedule = schedule | |
def on_epoch_end(self, epoch, logs=None): | |
if not hasattr(self.model.optimizer, "lr"): | |
raise ValueError('Optimizer must have a "lr" attribute.') | |
# Get the current learning rate from model's optimizer. | |
lr = float(tf.keras.backend.get_value(self.model.optimizer.learning_rate)) | |
# Call schedule function to get the scheduled learning rate. | |
# keys = list(logs.keys()) | |
# print("keys",keys) | |
val_acc = logs.get("val_binary_accuracy") | |
scheduled_lr = self.schedule(lr, val_acc) | |
# Set the value back to the optimizer before this epoch starts | |
tf.keras.backend.set_value(self.model.optimizer.lr, scheduled_lr) | |
def learning_rate_scheduler(lr, val_acc): | |
global count | |
global previous_acc | |
if val_acc <= previous_acc: | |
# print("acc ", val_acc, "previous acc ", previous_acc) | |
count += 1 | |
else: | |
previous_acc = val_acc | |
count = 0 | |
if count >= 5: | |
print("acc is the same for 10 epoch, learnin rate decreased by /10") | |
count = 0 | |
lr /= 10 | |
print("new learning rate:", lr) | |
return lr | |
#compile the model by determining loss function Binary Cross Entropy, optimizer as SGD | |
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.001, momentum=0.9), | |
loss=tf.keras.losses.BinaryCrossentropy(), | |
metrics=[tf.keras.metrics.BinaryAccuracy()], | |
sample_weight_mode=[None]) | |
early_stopping = EarlyStopping(monitor='val_loss', patience=10) | |
checkpointer = ModelCheckpoint(filepath=MODEL_FNAME, verbose=1, save_best_only=True) | |
csv_logger = CSVLogger('log.csv', append=True, separator=' ') | |
history=model.fit(train_batches, | |
validation_data = val_batches, | |
epochs = 100, | |
verbose = 1, | |
shuffle = True, | |
callbacks = [checkpointer,early_stopping,CustomLearningRateScheduler(learning_rate_scheduler),csv_logger]) | |
""" Plot the train and validation Loss """ | |
plt.plot(history.history['loss']) | |
plt.plot(history.history['val_loss']) | |
plt.title('model loss') | |
plt.ylabel('loss') | |
plt.xlabel('epoch') | |
plt.legend(['train', 'validation'], loc='upper left') | |
plt.show() | |
""" Plot the train and validation Accuracy """ | |
plt.plot(history.history['binary_accuracy']) | |
plt.plot(history.history['val_binary_accuracy']) | |
plt.title('model accuracy') | |
plt.ylabel('accuracy') | |
plt.xlabel('epoch') | |
plt.legend(['train', 'validation'], loc='upper left') | |
plt.show() | |
print("End of Training") | |
else: | |
""" Test """ | |
test_dir = os.path.join(base_dir, 'test') | |
test_batches = ImageDataGenerator(rescale = 1 / 255.).flow_from_directory(test_dir, | |
target_size=(INPUT_SIZE,INPUT_SIZE), | |
class_mode='categorical', | |
shuffle=False, | |
seed=42, | |
batch_size=1) | |
model = tf.keras.models.load_model(MODEL_FNAME) | |
model.summary() | |
# Evaluate on test data | |
scores = model.evaluate(test_batches) | |
print("metric names",model.metrics_names) | |
print(model.metrics_names[0], scores[0]) | |
print(model.metrics_names[1], scores[1]) | |
tf.keras.backend.clear_session() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment