Last active
January 12, 2025 12:07
-
-
Save Yaffle/fb47de4c18b63147699e0b621f1031f7 to your computer and use it in GitHub Desktop.
Math.fma - fused multiply–add (FMA) or fused multiply–accumulate (FMAC) in JavaScript
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// a * b + c | |
// Math.fma - fused multiply–add (FMA) or fused multiply–accumulate (FMAC) in JavaScript | |
// For implementation details, see "The Handbook of Applied Cryptography" | |
// http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf | |
// and | |
// https://github.com/JuliaLang/openlibm/blob/master/src/s_fma.c | |
//!? BUGGY | |
(function () { | |
"use strict"; | |
var SPLIT = Math.pow(2, 27) + 1; | |
var MIN_VALUE = Math.pow(2, -1022); | |
var EPSILON = Math.pow(2, -52); | |
// (1022 + 52) / 3 < C <= (1022 - 53 - 53 + 4) / 2 - ? | |
var C = 416; | |
var A = Math.pow(2, +C); | |
var B = Math.pow(2, -C); | |
var multiply = function (a, b) { | |
var at = SPLIT * a; | |
var ahi = at - (at - a); | |
var alo = a - ahi; | |
var bt = SPLIT * b; | |
var bhi = bt - (bt - b); | |
var blo = b - bhi; | |
var p = a * b; | |
var e = ((ahi * bhi - p) + ahi * blo + alo * bhi) + alo * blo; | |
return { | |
p: p, | |
e: e | |
}; | |
}; | |
var add = function (a, b) { | |
var s = a + b; | |
var v = s - a; | |
var e = (a - (s - v)) + (b - v); | |
return { | |
s: s, | |
e: e | |
}; | |
}; | |
var adjust = function (x, y) { | |
return x !== 0 && y !== 0 && SPLIT * x - (SPLIT * x - x) === x ? x * (1 + (x < 0 ? -1 : +1) * (y < 0 ? -1 : +1) * EPSILON) : x; | |
}; | |
Math.fma = function (x, y, z) { | |
x = Number(x); | |
y = Number(y); | |
z = Number(z); | |
if (x === 0 || x !== x || x === +1 / 0 || x === -1 / 0 || | |
y === 0 || y !== y || y === +1 / 0 || y === -1 / 0) { | |
return x * y + z; | |
} | |
if (z === 0) { | |
return x * y; | |
} | |
if (z !== z || z === +1 / 0 || z === -1 / 0) { | |
return z; | |
} | |
var scale = 1; | |
while (Math.abs(x) > A) { | |
scale *= A; | |
x *= B; | |
} | |
while (Math.abs(y) > A) { | |
scale *= A; | |
y *= B; | |
} | |
if (scale === 1 / 0) { | |
return x * y * scale; | |
} | |
while (Math.abs(x) < B) { | |
scale *= B; | |
x *= A; | |
} | |
while (Math.abs(y) < B) { | |
scale *= B; | |
y *= A; | |
} | |
if (scale === 0) { | |
return z; | |
} | |
var xs = x; | |
var ys = y; | |
var zs = z / scale; | |
if (Math.abs(zs) > Math.abs(xs * ys) * 4 / EPSILON) { | |
return z; | |
} | |
if (Math.abs(zs) < Math.abs(xs * ys) * EPSILON / 4 * EPSILON / 4) { | |
zs = (z < 0 ? -1 : +1) * MIN_VALUE; | |
} | |
var xy = multiply(xs, ys); | |
var s = add(xy.p, zs); | |
var u = add(xy.e, s.e); | |
var i = add(s.s, u.s); | |
var f = i.s + adjust(i.e, u.e); | |
if (f === 0) { | |
return f; | |
} | |
var fs = f * scale; | |
if (Math.abs(fs) > MIN_VALUE) { | |
return fs; | |
} | |
// It is possible that there was extra rounding for a denormalized value. | |
return fs + adjust(f - fs / scale, i.e) * scale; | |
}; | |
}()); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Here another implementation, but not passing overflow tests.
test(
FMA accuracy tests
, t => {actual = Math.fma(10.20, 20.91, 30.12);
expected = 243.402;
t.ok(actual === expected,
${actual - expected}, some value
);actual = Math.fma(0.1, 10, -1);
expected = 5.5511151231257827e-17;
t.ok(actual === expected,
${actual - expected}, non zero
);actual = Math.fma(1 + eps, 1 + eps, -1 - 2 * eps);
expected = eps * eps;
t.ok(actual === expected,
${actual - expected}, Nelson H. F. Beebe's test
);actual = Math.fma(1 + Math.pow(2, -30), 1 + Math.pow(2, -23), -(1 + Math.pow(2, -23) + Math.pow(2, -30)));
expected = Math.pow(2, -53);
t.ok(actual === expected,
${actual - expected}, Accurate Algorithms test1
);actual = Math.fma(1 + Math.pow(2, -30), 1 + Math.pow(2, -52), -(1 + Math.pow(2, -30)));
expected = Math.pow(2, -52) + Math.pow(2, -82);
t.ok(actual === expected,
${actual - expected}, Accurate Algorithms test2
);});
test('FMA infinity tests', t => {
t.ok(Math.fma(Infinity, 1, 1) === Infinity, 'is Infinity');
t.ok(Math.fma(1, Infinity, 1) === Infinity, 'is Infinity');
t.ok(Math.fma(1, 1, Infinity) === Infinity, 'is Infinity');
t.ok(Math.fma(Infinity, 1, 0) === Infinity, 'is Infinity');
t.ok(Math.fma(1, Infinity, 0) === Infinity, 'is Infinity');
t.ok(Math.fma(0, 1, Infinity) === Infinity, 'is Infinity');
t.ok(Math.fma(1, Infinity, Infinity) === Infinity, 'is Infinity');
t.ok(Math.fma(Infinity, 1, Infinity) === Infinity, 'is Infinity');
t.ok(Math.fma(Infinity, Infinity, 1) === Infinity, 'is Infinity');
t.ok(Math.fma(-Infinity, 1, 1) === -Infinity, 'is Infinity');
t.ok(Math.fma(1, -Infinity, 1) === -Infinity, 'is Infinity');
t.ok(Math.fma(1, 1, -Infinity) === -Infinity, 'is Infinity');
t.ok(Math.fma(-Infinity, 1, 0) === -Infinity, 'is Infinity');
t.ok(Math.fma(1, -Infinity, 0) === -Infinity, 'is Infinity');
t.ok(Math.fma(0, 1, -Infinity) === -Infinity, 'is Infinity');
t.ok(Math.fma(1, -Infinity, -Infinity) === -Infinity, 'is Infinity');
t.ok(Math.fma(-Infinity, 1, -Infinity) === -Infinity, 'is Infinity');
t.ok(Math.fma(-Infinity, -Infinity, 1) === Infinity, 'is Infinity');
});
test('FMA NaN tests', t => {
t.ok(isNaN(Math.fma(NaN, 1, 1)), 'is NaN');
t.ok(isNaN(Math.fma(1, NaN, 1)), 'is NaN');
t.ok(isNaN(Math.fma(1, 1, NaN)), 'is NaN');
t.ok(isNaN(Math.fma(Infinity, 0, 1)), 'is NaN');
t.ok(isNaN(Math.fma(0, Infinity, 1)), 'is NaN');
t.ok(isNaN(Math.fma(Infinity, 0, NaN)), 'is NaN');
t.ok(isNaN(Math.fma(0, Infinity, NaN)), 'is NaN');
t.ok(isNaN(Math.fma(-Infinity, 0, 1)), 'is NaN');
t.ok(isNaN(Math.fma(0, -Infinity, 1)), 'is NaN');
t.ok(isNaN(Math.fma(-Infinity, 0, NaN)), 'is NaN');
t.ok(isNaN(Math.fma(0, -Infinity, NaN)), 'is NaN');
t.ok(isNaN(Math.fma(Infinity, 0, -Infinity)), 'is NaN');
t.ok(isNaN(Math.fma(0, -Infinity, Infinity)), 'is NaN');
t.ok(isNaN(Math.fma(Infinity, 1, -Infinity)), 'is NaN');
t.ok(isNaN(Math.fma(1, -Infinity, Infinity)), 'is NaN');
t.ok(isNaN(Math.fma(-Infinity, 0, Infinity)), 'is NaN');
t.ok(isNaN(Math.fma(0, Infinity, -Infinity)), 'is NaN');
t.ok(isNaN(Math.fma(-Infinity, 1, Infinity)), 'is NaN');
t.ok(isNaN(Math.fma(1, Infinity, -Infinity)), 'is NaN');
t.ok(isNaN(Math.fma(Infinity, Infinity, -Infinity)), 'is NaN');
t.ok(isNaN(Math.fma(-Infinity, Infinity, Infinity)), 'is NaN');
t.ok(isNaN(Math.fma(Infinity, -Infinity, Infinity)), 'is NaN');
t.ok(isNaN(Math.fma(-Infinity, -Infinity, -Infinity)), 'is NaN');
});
test('FMA overflow tests', t => {
actual = Math.fma(Number.MAX_VALUE, 2., -Number.MAX_VALUE);
expected = Number.MAX_VALUE;
t.ok(actual === expected,
${actual - expected}, overflow test
);});