Last active
April 13, 2022 08:27
-
-
Save YashasSamaga/077a1d69c48e4cdb9957d167b7000b98 to your computer and use it in GitHub Desktop.
YOLOv4 OpenCV Performance Evaluation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// https://github.com/AlexeyAB/darknet/wiki/How-to-evaluate-accuracy-and-speed-of-YOLOv4 | |
// g++ -I/usr/local/include/opencv4/ main.cpp -lopencv_core -lopencv_imgproc -lopencv_dnn -lopencv_imgcodecs -O3 -std=c++17 -lstdc++fs | |
#include <iostream> | |
#include <queue> | |
#include <iterator> | |
#include <sstream> | |
#include <fstream> | |
#include <iomanip> | |
#include <chrono> | |
#include <experimental/filesystem> | |
namespace fs = std::experimental::filesystem; | |
#include <opencv2/core.hpp> | |
#include <opencv2/dnn.hpp> | |
#include <opencv2/dnn/all_layers.hpp> | |
#include <opencv2/imgproc.hpp> | |
#include <opencv2/highgui.hpp> | |
constexpr float CONFIDENCE_THRESHOLD = 0.001; | |
constexpr float NMS_THRESHOLD = 0.45; | |
constexpr int NUM_CLASSES = 80; | |
int main() | |
{ | |
std::vector<std::string> images; | |
{ | |
std::ifstream list("list"); | |
if (!list) | |
{ | |
std::cerr << "failed to open list\n"; | |
return 0; | |
} | |
std::string line; | |
while (std::getline(list, line)) | |
images.push_back(line); | |
} | |
auto net = cv::dnn::readNetFromDarknet("yolov4.cfg", "yolov4.weights"); | |
for (auto name : net.getUnconnectedOutLayersNames()) | |
{ | |
int layerId = net.getLayerId(name); | |
auto layer = net.getLayer(layerId).dynamicCast<cv::dnn::RegionLayer>(); | |
if (!layer.empty()) | |
layer->nmsThreshold = 0; | |
} | |
net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); | |
net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA_FP16); | |
auto output_names = net.getUnconnectedOutLayersNames(); | |
cv::Mat blob; | |
std::vector<cv::Mat> detections; | |
std::ofstream output("result.json"); | |
if (!output) | |
{ | |
std::cerr << "failed to open result.json\n"; | |
return 0; | |
} | |
output << "[\n"; | |
for (int idx = 0; idx < images.size(); idx++) | |
{ | |
auto frame = cv::imread(images[idx]); | |
if (frame.empty()) | |
{ | |
std::cerr << "failed to open " << images[idx] << std::endl; | |
continue; | |
} | |
auto image_id = std::atoll(fs::path(images[idx]).stem().c_str()); | |
auto total_start = std::chrono::steady_clock::now(); | |
cv::dnn::blobFromImage(frame, blob, 0.00392, cv::Size(608, 608), cv::Scalar(), true, false, CV_32F); | |
net.setInput(blob); | |
net.forward(detections, output_names); | |
std::vector<int> indices[NUM_CLASSES]; | |
std::vector<cv::Rect2f> boxes[NUM_CLASSES]; | |
std::vector<float> scores[NUM_CLASSES]; | |
for (auto& output : detections) | |
{ | |
const auto num_boxes = output.rows; | |
for (int i = 0; i < num_boxes; i++) | |
{ | |
auto x = output.at<float>(i, 0) * frame.cols; | |
auto y = output.at<float>(i, 1) * frame.rows; | |
auto width = output.at<float>(i, 2) * frame.cols; | |
auto height = output.at<float>(i, 3) * frame.rows; | |
auto xmin = x - width/2; | |
auto ymin = y - height/2; | |
auto xmax = x + width/2; | |
auto ymax = y + height/2; | |
if (xmin < 0) xmin = 0; | |
if (ymin < 0) ymin = 0; | |
if (xmax > frame.cols) xmax = frame.cols; | |
if (ymax > frame.rows) ymax = frame.rows; | |
cv::Rect2f rect(xmin, ymin, xmax - xmin, ymax - ymin); | |
for (int c = 0; c < NUM_CLASSES; c++) | |
{ | |
auto confidence = *output.ptr<float>(i, 5 + c); | |
if (confidence >= CONFIDENCE_THRESHOLD) | |
{ | |
boxes[c].push_back(rect); | |
scores[c].push_back(confidence); | |
} | |
} | |
} | |
} | |
for (int c = 0; c < NUM_CLASSES; c++) | |
cv::dnn::NMSBoxes(std::vector<cv::Rect>(std::begin(boxes[c]), std::end(boxes[c])), scores[c], 0.0, NMS_THRESHOLD, indices[c]); | |
for (int c= 0; c < NUM_CLASSES; c++) | |
{ | |
for (size_t i = 0; i < indices[c].size(); ++i) | |
{ | |
auto k = indices[c][i]; | |
const auto rect = boxes[c][k]; | |
const auto score = scores[c][k]; | |
if (score) | |
{ | |
const int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; | |
float x = rect.x; | |
float w = rect.width; | |
float y = rect.y; | |
float h = rect.height; | |
output << "{\"image_id\":" << image_id << ", \"category_id\":" << coco_ids[c] << ", \"bbox\":[" << x << ", " << y << ", " << w << ", " << h << "], \"score\":" << score << "},\n"; | |
} | |
} | |
} | |
} | |
output.seekp(-2, std::ios_base::cur); | |
output << "\n]"; | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://github.com/AlexeyAB/darknet/wiki/How-to-evaluate-accuracy-and-speed-of-YOLOv4 // g++ -I/usr/local/include/opencv4/ main.cpp -lopencv_core -lopencv_imgproc -lopencv_dnn -lopencv_imgcodecs -O3 -std=c++17 -lstdc++fs #include #include #include #include #include #include #include #include <experimental/filesystem> namespace fs = std::experimental::filesystem; #include <opencv2/core.hpp> #include <opencv2/dnn.hpp> #include <opencv2/dnn/all_layers.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> constexpr float CONFIDENCE_THRESHOLD = 0.001; constexpr float NMS_THRESHOLD = 0.45; constexpr int NUM_CLASSES = 80; int main() { std::vectorstd::string images; { std::ifstream list("list"); if (!list) { std::cerr << "failed to open list\n"; return 0; } std::string line; while (std::getline(list, line)) images.push_back(line); } auto net = cv::dnn::readNetFromDarknet("yolov4.cfg", "yolov4.weights"); for (auto name : net.getUnconnectedOutLayersNames()) { int layerId = net.getLayerId(name); auto layer = net.getLayer(layerId).dynamicCastcv::dnn::RegionLayer(); if (!layer.empty()) layer->nmsThreshold = 0; } net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA_FP16); auto output_names = net.getUnconnectedOutLayersNames(); cv::Mat blob; std::vectorcv::Mat detections; std::ofstream output("result.json"); if (!output) { std::cerr << "failed to open result.json\n"; return 0; } output << "[\n"; for (int idx = 0; idx < images.size(); idx++) { auto frame = cv::imread(images[idx]); if (frame.empty()) { std::cerr << "failed to open " << images[idx] << std::endl; continue; } auto image_id = std::atoll(fs::path(images[idx]).stem().c_str()); auto total_start = std::chrono::steady_clock::now(); cv::dnn::blobFromImage(frame, blob, 0.00392, cv::Size(608, 608), cv::Scalar(), true, false, CV_32F); net.setInput(blob); net.forward(detections, output_names); std::vector indices[NUM_CLASSES]; std::vectorcv::Rect2f boxes[NUM_CLASSES]; std::vector scores[NUM_CLASSES]; for (auto& output : detections) { const auto num_boxes = output.rows; for (int i = 0; i < num_boxes; i++) { auto x = output.at(i, 0) * frame.cols; auto y = output.at(i, 1) * frame.rows; auto width = output.at(i, 2) * frame.cols; auto height = output.at(i, 3) * frame.rows; auto xmin = x - width/2; auto ymin = y - height/2; auto xmax = x + width/2; auto ymax = y + height/2; if (xmin < 0) xmin = 0; if (ymin < 0) ymin = 0; if (xmax > frame.cols) xmax = frame.cols; if (ymax > frame.rows) ymax = frame.rows; cv::Rect2f rect(xmin, ymin, xmax - xmin, ymax - ymin); for (int c = 0; c < NUM_CLASSES; c++) { auto confidence = *output.ptr(i, 5 + c); if (confidence >= CONFIDENCE_THRESHOLD) { boxes[c].push_back(rect); scores[c].push_back(confidence); } } } } for (int c = 0; c < NUM_CLASSES; c++) cv::dnn::NMSBoxes(std::vectorcv::Rect(std::begin(boxes[c]), std::end(boxes[c])), scores[c], 0.0, NMS_THRESHOLD, indices[c]); for (int c= 0; c < NUM_CLASSES; c++) { for (size_t i = 0; i < indices[c].size(); ++i) { auto k = indices[c][i]; const auto rect = boxes[c][k]; const auto score = scores[c][k]; if (score) { const int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; float x = rect.x; float w = rect.width; float y = rect.y; float h = rect.height; output << "{"image_id":" << image_id << ", "category_id":" << coco_ids[c] << ", "bbox":[" << x << ", " << y << ", " << w << ", " << h << "], "score":" << score << "},\n"; } } } } output.seekp(-2, std::ios_base::cur); output << "\n]"; return 0; }