Created
October 29, 2017 08:16
-
-
Save Yevgnen/619a80ba6f1f06abaf8905804c707042 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# Illustrating pytorch's padding API | |
import torch | |
import numpy as np | |
vocab_size = 20 | |
max_len = 10 | |
n_samples = 3 | |
emb_size = 5 | |
hidden_size = 6 | |
emb = torch.nn.Embedding(vocab_size + 1, emb_size) | |
gru = torch.nn.GRU(emb_size, hidden_size) | |
seqs = [ | |
np.random.randint(1, vocab_size, np.random.randint(1, max_len + 1)) | |
for x in range(n_samples) | |
] | |
lens = [len(x) for x in seqs] | |
sorted_seqs, lens = zip(*sorted(zip(seqs, lens), key=lambda x: -x[1])) | |
padded_seqs = np.array( | |
[np.pad(x, (0, max_len - len(x)), 'constant') for x in sorted_seqs]).T | |
var = torch.autograd.Variable(torch.LongTensor(padded_seqs)) | |
embedded = emb(var) | |
# Approach 1: Zeros will be treated as word index: WRONG! | |
init_hidden = torch.autograd.Variable(torch.zeros([1, n_samples, hidden_size])) | |
outputs, hidden = gru(embedded, init_hidden) | |
# Approach 2: Padding API | |
ppseqs = torch.nn.utils.rnn.pack_padded_sequence(embedded, lens) | |
pp_outputs, pp_hidden = gru(ppseqs, init_hidden) | |
pp_outputs_ = torch.nn.utils.rnn.pad_packed_sequence(pp_outputs)[0] | |
pp_outputs_ = pp_outputs_[[u - 1 for u in lens], list(range(len(lens)))] | |
# Approach 3: Manually forward one by one | |
ops = [] | |
hds = [] | |
for x in sorted_seqs: | |
x = torch.autograd.Variable(torch.LongTensor(x).view(-1, 1)) | |
x = emb(x) | |
o, h = gru(x, torch.autograd.Variable(torch.zeros([1, 1, hidden_size]))) | |
ops.append(o) | |
hds.append(h) | |
hds = torch.cat(list(hds), 1) | |
ops = torch.cat([x[-1] for x in ops], 0) | |
assert torch.norm(hds - pp_hidden, p=1).data.numpy() < 1e-10 | |
assert torch.norm(hds - pp_hidden, p=1).data.numpy() < 1e-10 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment