Skip to content

Instantly share code, notes, and snippets.

@YimianDai
Last active July 30, 2019 04:23
Show Gist options
  • Save YimianDai/8b648416a435bd537b4c76c75000ee79 to your computer and use it in GitHub Desktop.
Save YimianDai/8b648416a435bd537b4c76c75000ee79 to your computer and use it in GitHub Desktop.
MultiBox

这篇文章依赖更长的 arXiv 版本

Szegedy, Christian, et al. "Scalable, high-quality object detection." arXiv preprint arXiv:1412.1441 (2014).

会议版本

Dumitru Erhan, Christian Szegedy, Alexander Toshev, Dragomir Anguelov; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 2147-2154

只是一个 bbox generator,产生的 bbox 是被认为会包含有 Object 的 bbox,其实就是 Region Proposal Network 啦,Learning to Propose Regions

是 Proposal Generation Model

哈哈,作者自己论文里说了

Our work builds upon the MultiBox approach presented in [4], which was an earlier attempt to learn a proposal generation model but was never directly competitive with the best expert-engineered alternatives.

那看来是之前的会议版本的 Proposal Generation 效果不好啊,为啥不好呢?

在新的版本里,作者用了 latest Inception-Style architecture,multi-scale Convolutional predictors of bounding box shape and confidence 就好了,难怪要在摘要里把这个叫做 multi-scale convolutional MultiBox (MSC-MultiBox),突出个 multi-scale

RPN 是 Anchor 机制,MultiBox 也是 Anchor 机制,两个有啥差别呢?论文自己都说了,The biggest similarity is the usage of priors (called “anchors in the Fast R-CNN work [8]),区别是:

  1. MultiBox 用了 multiple tapering layers(指的就是 Fig. 2),而 RPN predicting boxes of many scales from a single feature map
  2. MultiBox 的 confidences 是 class-agnostic 的,难道 RPN 是预测 class label 的么?也不是吧?
  3. Regression and Classification loss 不一样,真的不一样么?
  4. 网络结构不一样

class agnostic

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment