- SLIC,唯一的一个参数就是 k,想要的 superpixel 的数量
- To produce roughly equally sized superpixels, the grid interval is
$S= \sqrt{N/k}$ - 最好当然是每个 superpixel 像素数都是一样的咯,是不是能够这么保证呢?拭目以待
- 怎么确定 center?
- 这其实是算法的第一步,确定 center
- The centers are moved to seed locations corresponding to the lowest gradient position in a
$3 \times 3$ neighborhood. - 这是为了避免让 seed 落在 edge 上 to reduce the chance of seeding a superpixel with a noisy pixel
- 怎么 assign pixel?
- 算法的第二步,pixel assignment
- 每个 superpixel 期待的 size 是
$S \times S$ - SLIC 每个 pixel 只寻找
$2S \times 2S$ 内的 center,还是每个 center 寻找$2S \times 2S$ 内的 pixel- 虽然这两个应该本质是一样的,但这个应该关系到对算法的理解吧
-
each pixel i is associated with the nearest cluster center whose search region overlaps its location
- 这也太简单了吧?
- 这个 nearest 的距离,究竟是空间的距离,还是 灰度的距离?
- update step —— 调整 cluster center
- adjusts the cluster centers to be the mean
$[l\ a\ b\ x\ y]^T$ vector of all the pixels belonging to the cluster- 看来这个距离,是 灰度和距离的混合体啊
- 10 iterations suffices for most images
- adjusts the cluster centers to be the mean
- postprocessing step
- enforces connectivity by reassigning disjoint pixels to nearby superpixels
- 整体的算法流程
-
因为距离度量同时包含了空间距离和颜色距离,但这两者不在同一空间内,如果 superpixel 大的话,空间距离一下子就会盖过颜色距离,所有有必要 combine the two distances into a single measure,具体的做法是 normalize color proximity and spatial proximity by their respective maximum distances within a cluster,
$N_s$ and$N_c$
- 怎么处理 “orphaned” pixels that do not belong to the same connected component as their cluster center may remain
- such pixels are assigned the label of the nearest cluster center using a connected components algorithm.
@article{Achanta2012SLICSC,
title={SLIC Superpixels Compared to State-of-the-Art Superpixel Methods},
author={Radhakrishna Achanta and Appu Shaji and Kevin Smith and Aur{\'e}lien Lucchi and Pascal Fua and Sabine S{\"u}sstrunk},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2012},
volume={34},
pages={2274-2282}
}