- 根据所处理对象的不同,将目标检测分为:
- 基于背景建模的方法
- 基于前景建模的方法
- 根据跟踪过程有无目标检测的参与,将跟踪方法分为:
- 生成式
- 判别式
关键是要学到 transformation-invariant features,CNN 没有抽取 scale-invariant 特征的设计,因此也就没有 scale-invariant 性质
max-pooling [1] for small translation-invariance 因为我需要对位置很敏感,所以不应该有 max-pooling
除了 max-pooling for small translation-invariance 以外,CNN 中没有针对其他 geometric transformations 来 modeling
究其根本,是因为卷积操作本身具有固定的几何结构,而由其层叠搭建而成的卷积网络的几何结构也是固定的,所以不具有对于几何形变建模的能力。
小物体信息无法重建 (假设有四个 pooling layer 则 任何小于 2^4 = 16 pixel 的物体信息将理论上无法重建。)
相比原来的正常 convolution,dilated convolution 多了一个 hyper-parameter 称之为 dilation rate 指的是 kernel 的间隔数量 (e.g. 正常的 convolution 是 dilatation rate 1)。
正常的是 dilation=(1, 1) kernel 的间隔数量,我觉得应该下 多少个 是另外一个 kernel 的点,正常的就是 下 1 个,当我
- sparse coding methods in visual tracking can be categorized into
- appearance modeling based on sparse coding (AMSC)
- target searching based on sparse representation (TSSR)
- their combination
- 结论
- (1) AMSC methods significantly outperform TSSR methods
- such convex formulation is based on a strong assumption which may not hold in real-world applications, and the approximation error in these convex relaxations often can- not be neglected.
- 算是本文的 Motivation 吧,但是究竟原来的 convex relaxation 怎么在 real-world 里不 hold 了,也没有交代清楚
- 总的来说,作者就是觉得大家都在用 convex relaxation 求解,他要用 non-convex 的来求解
- propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets)
- 就是 low-rank
- visual tracking exploits the sparse representation of the target candidate using a dictionary of templates
- Robustness:
- Robustness means that even under complicated conditions, the tracking algorithms should be able to follow the interested object. The tracking difficulties may be cluttered back- ground, partial and full changing illuminations, occlusions or complex object motion.
- Adaptivity:
- Additional to various changes of the environment that an object is located in, the object itself also undergoes changes. This requires a steady adaptation mechanism of the tracking system to the actual object appearance.
- 一句话介绍本文方法:
- a robust visual tracking method by casting tracking as a sparse approximation problem in a particle filter framework.
- 怎么处理 occlusion 和 corruption?
- occlusion, corruption and other challenging issues are addressed seamlessly through a set of trivial templates.
- 怎么 detect the target?
- Specifically, to find the tracking target at a new frame, each target candidate is sparsely represented in the space spanned by target templates and trivial templates.
- 和 hierarchical nature of primate visual cortex 相符合
- hierarchical approaches have been shown to consistently outperform flat single-template (holistic) object recognition systems
- 就是效果好