Skip to content

Instantly share code, notes, and snippets.

View YimianDai's full-sized avatar
💭
I may be slow to respond.

Yimian Dai YimianDai

💭
I may be slow to respond.
View GitHub Profile
@YimianDai
YimianDai / Yi2016ObjectDA.md
Last active July 30, 2019 19:50
2016-自动化学报-基于视觉的目标检测与跟踪综述

2016-自动化学报-基于视觉的目标检测与跟踪综述

摘要

  • 根据所处理对象的不同,将目标检测分为:
    • 基于背景建模的方法
    • 基于前景建模的方法
  • 根据跟踪过程有无目标检测的参与,将跟踪方法分为:
    • 生成式
  • 判别式
@YimianDai
YimianDai / Deformation-Convolution.md
Created July 30, 2019 17:48
Deformation Convolution

Notes on DCN

关键是要学到 transformation-invariant features,CNN 没有抽取 scale-invariant 特征的设计,因此也就没有 scale-invariant 性质

max-pooling [1] for small translation-invariance 因为我需要对位置很敏感,所以不应该有 max-pooling

除了 max-pooling for small translation-invariance 以外,CNN 中没有针对其他 geometric transformations 来 modeling

究其根本,是因为卷积操作本身具有固定的几何结构,而由其层叠搭建而成的卷积网络的几何结构也是固定的,所以不具有对于几何形变建模的能力。

@YimianDai
YimianDai / Dilated-Convolution.md
Created July 30, 2019 17:46
Dilated Convolution

Notes on Dilated Convolution

小物体信息无法重建 (假设有四个 pooling layer 则 任何小于 2^4 = 16 pixel 的物体信息将理论上无法重建。)

相比原来的正常 convolution,dilated convolution 多了一个 hyper-parameter 称之为 dilation rate 指的是 kernel 的间隔数量 (e.g. 正常的 convolution 是 dilatation rate 1)。

正常的是 dilation=(1, 1) kernel 的间隔数量,我觉得应该下 多少个 是另外一个 kernel 的点,正常的就是 下 1 个,当我

Reference

@YimianDai
YimianDai / Zhang2013SparseCB.md
Created July 30, 2019 05:47
2013-PR-Sparse coding based visual tracking Review and experimental comparison

PR - 2013 - Sparse coding based visual tracking Review and experimental comparison

Abstract

  • sparse coding methods in visual tracking can be categorized into
    • appearance modeling based on sparse coding (AMSC)
    • target searching based on sparse representation (TSSR)
    • their combination
  • 结论
  • (1) AMSC methods significantly outperform TSSR methods
@YimianDai
YimianDai / Sun2013RobustPC.md
Created July 30, 2019 05:37
2013-KDD-Robust principal component analysis via capped norms

2013 - KDD - Robust principal component analysis via capped norms

Abstract

  • such convex formulation is based on a strong assumption which may not hold in real-world applications, and the approximation error in these convex relaxations often can- not be neglected.
    • 算是本文的 Motivation 吧,但是究竟原来的 convex relaxation 怎么在 real-world 里不 hold 了,也没有交代清楚
    • 总的来说,作者就是觉得大家都在用 convex relaxation 求解,他要用 non-convex 的来求解

Problem Formulation

@YimianDai
YimianDai / Achanta2012SLICSC.md
Last active July 30, 2019 05:19
2012-TPAMI-SLIC Superpixels Compared to State-of-the-Art Superpixel Methods

2012 - TPAMI - Slic superpixels compared to state-of-the-art superpixel methods

SLIC SUPERPIXELS

Algorithm

  • SLIC,唯一的一个参数就是 k,想要的 superpixel 的数量
  • To produce roughly equally sized superpixels, the grid interval is $S= \sqrt{N/k}$
    • 最好当然是每个 superpixel 像素数都是一样的咯,是不是能够这么保证呢?拭目以待
  • 怎么确定 center?
@YimianDai
YimianDai / Zhang2012LowRankSL.md
Last active July 30, 2019 05:20
2012-ECCV-Low-rank sparse learning for robust visual tracking

2012 - ECCV - Low-rank sparse learning for robust visual tracking

Abstract

  • propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets)
    • 就是 low-rank

Introduction

  • visual tracking exploits the sparse representation of the target candidate using a dictionary of templates
@YimianDai
YimianDai / Yang2011RecentAA.md
Last active July 30, 2019 05:24
2011-NC-Recent advances and trends in visual tracking: A review

NC - 2011 - Recent advances and trends in visual tracking A review

Introduction

对 tracking 算法的要求

  • Robustness:
    • Robustness means that even under complicated conditions, the tracking algorithms should be able to follow the interested object. The tracking difficulties may be cluttered back- ground, partial and full changing illuminations, occlusions or complex object motion.
  • Adaptivity:
  • Additional to various changes of the environment that an object is located in, the object itself also undergoes changes. This requires a steady adaptation mechanism of the tracking system to the actual object appearance.
@YimianDai
YimianDai / Mei2009RobustVT.md
Last active July 30, 2019 05:31
2009-ICCV-Robust visual tracking using L1 minimization

2009 - ICCV - Robust visual tracking using L1 minimization

摘要

  • 一句话介绍本文方法:
    • a robust visual tracking method by casting tracking as a sparse approximation problem in a particle filter framework.
  • 怎么处理 occlusion 和 corruption?
    • occlusion, corruption and other challenging issues are addressed seamlessly through a set of trivial templates.
  • 怎么 detect the target?
  • Specifically, to find the tracking target at a new frame, each target candidate is sparsely represented in the space spanned by target templates and trivial templates.
@YimianDai
YimianDai / Serre2005ObjectRW.md
Last active July 30, 2019 04:56
2005-CVPR-Object recognition with features inspired by visual cortex

2005 - CVPR - Object recognition with features inspired by visual cortex

Introduction

Hierarchical approaches popular 的原因

  • 和 hierarchical nature of primate visual cortex 相符合
  • hierarchical approaches have been shown to consistently outperform flat single-template (holistic) object recognition systems
    • 就是效果好