Created
April 11, 2017 08:05
-
-
Save YuheiNakasaka/f6420b40b01f5e3a3bca6446e098a103 to your computer and use it in GitHub Desktop.
Aggrigate impressions per day from exported twitter analytics csv with pandas
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
df = pd.read_csv('tweet_activity_metrics_example_20170314_20170412_ja.csv', header=None).loc[:, [3, 4]] | |
df = df.drop(0) | |
df[3] = pd.to_datetime(df[3]) | |
df[4] = pd.to_numeric(df[4]) | |
result = df.groupby([df[3].dt.year, df[3].dt.month, df[3].dt.day])[4].sum() | |
print(result) | |
# date sum of impressions | |
# 2017 3 14 127.0 | |
# 15 66.0 | |
# 16 31.0 | |
# 17 129.0 | |
# 18 175.0 | |
# 19 128.0 | |
# 20 109.0 | |
# 21 157.0 | |
# 22 113.0 | |
# 23 106.0 | |
# 24 153.0 | |
# 25 116.0 | |
# 26 124.0 | |
# 27 199.0 | |
# 28 155.0 | |
# 29 146.0 | |
# 30 196.0 | |
# 31 230.0 | |
# 4 1 164.0 | |
# 2 183.0 | |
# 3 282.0 | |
# 4 227.0 | |
# 5 116.0 | |
# 6 154.0 | |
# 7 101.0 | |
# 8 177.0 | |
# 9 192.0 | |
# 10 141.0 | |
# 11 21.0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment