Created
June 11, 2024 13:28
-
-
Save ZFTurbo/08f84764ecd070249235c74882065809 to your computer and use it in GitHub Desktop.
PyCuda image resize
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
__author__ = 'ZFTurbo: https://github.com/ZFTurbo/' | |
if __name__ == '__main__': | |
import os | |
gpu_use = "0" | |
print('GPU use: {}'.format(gpu_use)) | |
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use) | |
import os | |
import glob | |
import pycuda.autoinit | |
import pycuda.driver as cuda | |
import cv2 | |
from pycuda.compiler import SourceModule | |
import numpy as np | |
def show_image(im, name='image'): | |
cv2.imshow(name, im.astype(np.uint8)) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() | |
kernel_code = """ | |
__global__ void resizeImage(const unsigned char* input, float* output, int input_width, int input_height, int output_width, int output_height) | |
{ | |
int x = blockIdx.x * blockDim.x + threadIdx.x; | |
int y = blockIdx.y * blockDim.y + threadIdx.y; | |
if (x < output_width && y < output_height) | |
{ | |
float scale_x = (float)input_width / output_width; | |
float scale_y = (float)input_height / output_height; | |
int src_x = (int)(x * scale_x); | |
int src_y = (int)(y * scale_y); | |
int src_index = (src_y * input_width + src_x) * 3; | |
int dst_index = (y * output_width + x) * 3; | |
output[dst_index] = (float)input[src_index]; | |
output[dst_index + 1] = (float)input[src_index + 1]; | |
output[dst_index + 2] = (float)input[src_index + 2]; | |
} | |
} | |
""" | |
mod = SourceModule(kernel_code) | |
resize_func = mod.get_function("resizeImage") | |
block_size = (16, 16, 1) | |
grid_size = ((320 - 1) // block_size[0] + 1, (320 - 1) // block_size[1] + 1, 1) | |
if __name__ == '__main__': | |
img_path = 'example.png' | |
img = cv2.imread(img_path) | |
show_image(img) | |
img_resized = np.zeros((180, 320, 3), dtype=np.float32) | |
img_gpu = cuda.mem_alloc(img.nbytes) | |
resized_img_gpu = cuda.mem_alloc(img_resized.nbytes) | |
cuda.memcpy_htod(img_gpu, img) | |
inp_h, inp_w = img.shape[:2] | |
out_w, out_h = 320, 180 | |
resize_func( | |
img_gpu, | |
resized_img_gpu, | |
np.int32(inp_w), | |
np.int32(inp_h), | |
np.int32(out_w), | |
np.int32(out_h), | |
block=block_size, | |
grid=grid_size | |
) | |
cuda.memcpy_dtoh(img_resized, resized_img_gpu) | |
print(img_resized.shape) | |
show_image(img_resized.astype(np.float32)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment