Created
November 17, 2017 20:35
-
-
Save ZWMiller/2c56fb6ea32028a07111101e92e0d59e to your computer and use it in GitHub Desktop.
Building a simple recommendation system with a toy dataset and SVD
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
num_users = 10 | |
num_items = 5 | |
np.random.seed(42) | |
def generate_users(num_users, num_items): | |
data = [] | |
for i in range(num_users): | |
user = [np.random.randint(2) for _ in range(num_items)] | |
data.append(user) | |
return data | |
cols = ["item"+str(i) for i in range(num_items)] | |
rows = ["user"+str(i) for i in range(num_users)] | |
user_item_mat = pd.DataFrame(generate_users(num_users,num_items), columns=cols) | |
user_item_mat.index = rows | |
from scipy.linalg import svd | |
U, Sigma, VT = svd(user_item_mat) | |
VT = VT[:3,:] | |
pd.DataFrame(VT.T) | |
U = U[:,:3] | |
pd.DataFrame(U) | |
compare_item = 2 | |
for item in range(num_items): | |
if item != compare_item: | |
print("Item %s & %s: "%(compare_item,item), np.dot(VT.T[compare_item],VT.T[item])) | |
compare_user = 6 | |
for user in range(num_users): | |
#if user != compare_user: | |
print("User %s & %s: "%(compare_user,user), np.dot(U[compare_user],U[user])) | |
def get_recommends(itemID, VT, num_recom=2): | |
recs = [] | |
for item in range(VT.T.shape[0]): | |
if item != itemID: | |
recs.append([item,np.dot(VT.T[itemID],VT.T[item])]) | |
final_rec = [i[0] for i in sorted(recs,key=lambda x: x[1],reverse=True)] | |
return final_rec[:num_recom] | |
print(get_recommends(2,VT,num_recom=2)) | |
def get_recommends_user(userID, U, df): | |
userrecs = [] | |
for user in range(U.shape[0]): | |
if user!= userID: | |
userrecs.append([user,np.dot(U[userID],U[user])]) | |
final_rec = [i[0] for i in sorted(userrecs,key=lambda x: x[1],reverse=True)] | |
comp_user = final_rec[0] | |
print("User #%s's most similar user is User #%s "% (userID, comp_user)) | |
rec_likes = df.iloc[comp_user] | |
current = df.iloc[userID] | |
recs = [] | |
for i,item in enumerate(current): | |
if item != rec_likes[i] and rec_likes[i]!=0: | |
recs.append(i) | |
return recs | |
user_to_rec = 3 | |
print("Items for User %s to check out: "% user_to_rec, get_recommends_user(user_to_rec,U,user_item_mat)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment