Last active
January 24, 2021 17:39
-
-
Save Ze1598/1eaabe8c91ed1bcbdb46f0e9b9ca1c4a to your computer and use it in GitHub Desktop.
Python Data Analysis Part 2: Annual Compensation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from os import getcwd, path | |
import plotly.express as px | |
import plotly.offline as pyo | |
pyo.init_notebook_mode() | |
path_to_data = path.join(getcwd(), "data", "survey_results_public.csv") | |
data = pd.read_csv(path_to_data) | |
data = data[["ConvertedComp"]] | |
data = data[(data["ConvertedComp"] >= 0) & (data["ConvertedComp"] <= 200_000)] | |
print(f"Rows left: {data.shape[0]:,}") | |
bin_labels = [ | |
f"[{int(i / 1_000):,}K, {int((i + 15_000) / 1_000):,}K)" | |
for i in range(0, 200_001, 15_000) | |
] | |
compensation_bins = pd.IntervalIndex.from_tuples( | |
[ | |
(i, i + 15_000) | |
for i in range(0, 200_001, 15_000) | |
], | |
closed="left" | |
) | |
data = pd.cut( | |
data["ConvertedComp"], | |
compensation_bins, | |
precision=0, | |
include_lowest=True | |
) | |
data.sort_values(inplace=True) | |
data = data.astype("str") | |
fig = px.histogram( | |
data, | |
title="Annual Compensation (USD)", | |
) | |
fig.update_layout( | |
xaxis = { | |
"tickmode": "array", | |
"tickvals": data.unique(), | |
"ticktext": bin_labels | |
}, | |
xaxis_title = "Annual Compensation", | |
yaxis_title = "Frequency", | |
title_x = 0.5, | |
bargap = 0, | |
showlegend = False | |
) | |
fig.update_traces( | |
marker = { | |
"line": { | |
"width": 2, | |
"color": "DarkSlateGrey" | |
} | |
} | |
) | |
fig.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment