Using Requests and Beautiful Soup, with the most recent Beautiful Soup 4 docs.
Install our tools (preferably in a new virtualenv):
pip install beautifulsoup4
mha <- 1 # mean under the alternative | |
es <- 2 # observed effect (deviation from mean under H0) | |
x <- seq(-6, 6, length=1000) | |
dh0 <- dnorm(x, 0, 1) | |
show.it <- function(es, mha, verbose=FALSE) { | |
dh1 <- dnorm(x, mha, 1) | |
plot.new() | |
plot.window(xlim=range(x), ylim=c(0,.6)) |
from numpy import loadtxt, zeros, ones, array, linspace, logspace, mean, std, arange | |
from mpl_toolkits.mplot3d import Axes3D | |
import matplotlib.pyplot as plt | |
from pylab import plot, show, xlabel, ylabel | |
#Evaluate the linear regression | |
def feature_normalize(X): | |
''' | |
Returns a normalized version of X where |
# Function to implement a version of the improved moving average functionality | |
# introduced and tested in: | |
# | |
# Papailias, Fotis and Thomakos, Dimitrios D., | |
# "An Improved Moving Average Technical Trading Rule, | |
# (September 11, 2011). Available at SSRN: http://ssrn.com/abstract=1926376 | |
# | |
# Original code written by Kent Russell @ timelyportfolio.com | |
# | |
# Cross-checked by Dimitrios Thomakos on 11/29/2011, @ quantf.com |
Using Requests and Beautiful Soup, with the most recent Beautiful Soup 4 docs.
Install our tools (preferably in a new virtualenv):
pip install beautifulsoup4
sudo apt-get install unzip; | |
wget -O /tmp/chromedriver.zip http://chromedriver.googlecode.com/files/chromedriver_linux64_19.0.1068.0.zip && sudo unzip /tmp/chromedriver.zip chromedriver -d /usr/local/bin/; |
This post examines the features of [R Markdown](http://www.rstudio.org/docs/authoring/using_markdown) | |
using [knitr](http://yihui.name/knitr/) in Rstudio 0.96. | |
This combination of tools provides an exciting improvement in usability for | |
[reproducible analysis](http://stats.stackexchange.com/a/15006/183). | |
Specifically, this post | |
(1) discusses getting started with R Markdown and `knitr` in Rstudio 0.96; | |
(2) provides a basic example of producing console output and plots using R Markdown; | |
(3) highlights several code chunk options such as caching and controlling how input and output is displayed; | |
(4) demonstrates use of standard Markdown notation as well as the extended features of formulas and tables; and | |
(5) discusses the implications of R Markdown. |
require(quantmod) | |
require(PerformanceAnalytics) | |
require(xtsExtra) | |
require(RColorBrewer) | |
#unfortunately don't feel like fighting IP lawyers so I cannot share this index data | |
portfolio <- read.csv("C:\\Users\\Kent.TLEAVELL_NT\\Documents\\old\\R\\lbustruu with tbill.csv",stringsAsFactors=FALSE) | |
portfolio <- portfolio[2:NROW(portfolio),2:NCOL(portfolio)] | |
portfolio <- portfolio[,c(1,3,5)] |
license: gpl-3.0 |
getCIK = function(ticker) { | |
stopifnot(is.character(ticker)) | |
uri = "http://www.sec.gov/cgi-bin/browse-edgar" | |
response = getForm(uri,CIK=ticker,action="getcompany") | |
html = htmlParse(response) | |
CIKNode = getNodeSet(html, "//acronym[@title=\"Central Index Key\"][text() = \"CIK\"]") | |
CIKNodeText = sapply(CIKNode, function(x) xmlValue(getSibling(getSibling(x)))) | |
CIK = sub(" .*","",CIKNodeText) | |
CIK = sub("^0*","",CIK) |