Last active
August 15, 2021 14:38
-
-
Save Zekt/ca5b5e89670b4fd1043a9016c88fb1c3 to your computer and use it in GitHub Desktop.
Showcasing usage of declareData and defineData now being tested in Zekt/agda.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS -v meta:5 #-} | |
--{-# OPTIONS -v tc.data.con:16 #-} | |
--{-# OPTIONS -v tc.unquote.def:11 #-} | |
--{-# OPTIONS -v tc.data.sort:21 #-} | |
--{-# OPTIONS -v tc.data.con.comp:6 #-} | |
--{-# OPTIONS -v tc.conv.term:21 #-} | |
--{-# OPTIONS -v scope.lhs:60 #-} | |
--{-# OPTIONS -v scope.operators:60 #-} | |
open import Reflection | |
open import Agda.Builtin.Reflection | |
import Reflection.Name | |
import Reflection.Term | |
import Level as Level | |
--open import Reflection.Clause | |
open import Tactic.MonoidSolver | |
open import Data.Unit | |
open import Data.Empty | |
open import Data.Bool | |
open import Data.Nat | |
open import Data.Nat.Show | |
open import Data.Nat.Properties | |
open import Data.List | |
open import Agda.Builtin.Sigma | |
open import Data.Product using (_×_; proj₁; proj₂) | |
open import Data.Bool | |
open import Data.String renaming (_++_ to _⧺_) | |
open import Function.Base | |
open import Relation.Nullary | |
import Data.Fin | |
open import Relation.Binary.PropositionalEquality | |
using (_≡_; | |
refl) | |
macro | |
showTerm′ : Term → Term → TC ⊤ | |
showTerm′ t hole = do | |
debugPrint "meta" 2 [ termErr t ] | |
unify hole (quoteTerm tt) | |
macro | |
showType : Name → Term → TC _ | |
showType t hole = do | |
t2 ← getType t | |
debugPrint "meta" 2 [ termErr t2 ] | |
unify hole (quoteTerm tt) | |
showCs : List Name → TC ⊤ | |
showCs [] = debugPrint "meta" 2 [ strErr "All constructors printed." ] | |
showCs (x ∷ l) = getType x >>= λ c → | |
debugPrint "meta" 2 (strErr "Constructor " | |
∷ nameErr x | |
∷ strErr (" is defined as:\n" ⧺ (showTerm c)) | |
∷ []) >> | |
showCs l | |
showDef′ : Name → TC _ | |
showDef′ n = do | |
getDefinition n >>= λ where | |
d@(data-type _ cs) → do | |
debugPrint "meta" 2 [ strErr (showDefinition d) ] | |
showCs cs | |
d → debugPrint "meta" 2 [ strErr (showDefinition d) ] | |
getType n >>= λ x → | |
debugPrint "meta" 2 (strErr "The type of the declared datatype '" | |
∷ nameErr n | |
∷ strErr "' is: " | |
∷ termErr x | |
∷ []) | |
newData : Name → ℕ → Type → List (Name × Type) → TC ⊤ | |
newData n npars t cs = do | |
declareData n npars t | |
defineData n cs | |
getType n >>= λ x → | |
debugPrint "meta" 2 (strErr "The type of the declared datatype '" | |
∷ nameErr n | |
∷ strErr "' is: " | |
∷ termErr x | |
∷ []) | |
--getDefinition n >>= λ where | |
-- d → debugPrint "meta" 2 [ strErr (showDefinition d) ] | |
--showDef′ n | |
printDef "meta" 5 n | |
newtype′ : ℕ × Type | |
newtype′ = (1 , (quoteTerm ((idx : ℕ) → (A : Set) → List A → Set))) | |
newcon′ : Name → Term | |
newcon′ n = (pi (hArg (quoteTerm ℕ)) | |
(abs "idx" (pi (vArg (quoteTerm Set)) | |
(abs "A" (pi (vArg (def (quote List) (vArg (var 0 []) ∷ []))) | |
(abs "_" (def n (vArg (var 2 []) | |
∷ vArg (var 1 []) | |
∷ vArg (var 0 []) | |
∷ [])))))))) | |
unquoteDecl newtype conpi conpi₁ = do let (t₁ , t₂) = newtype′ | |
newData newtype t₁ t₂ ((conpi , newcon′ newtype) | |
∷ (conpi₁ , newcon′ newtype) | |
∷ []) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment