Couldn't do for all batches combined with 12 tasks. Because "horizontal" order is not kept between "Batch n" tests.
MapIt: place: [0, 0, 100, 8, 0, 0, 0, 44, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0] ...
MapIt: laugh: [100, 63, 91, 0, 0, 91, 56, 0, 56, 0, 0, 91, 0, 56, 5, 0, 63, 0, 5, 19, 10] ...
MapIt: story: [0, 0, 100, 83, 0, 0, 1, 28, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0] ...
Analysis 2014-07-06 12:24:07 -0700
= Statsample::Factor::ParallelAnalysis
There are 3 real factors on data
== Principal Component Analysis
Number of factors: 2
Communalities
+--------------+---------+------------+--------+
| Variable | Initial | Extraction | % |
+--------------+---------+------------+--------+
| MapIt: laugh | 1.000 | 0.998 | 99.760 |
| MapIt: place | 1.000 | 0.864 | 86.392 |
| MapIt: story | 1.000 | 0.863 | 86.295 |
+--------------+---------+------------+--------+
Total Variance Explained
+-------------+---------+---------+---------+
| Component | E.Total | % | Cum. % |
+-------------+---------+---------+---------+
| Component 1 | 1.719 | 57.305% | 57.305 |
| Component 2 | 1.005 | 33.511% | 90.816 |
| Component 3 | 0.276 | 9.184% | 100.000 |
+-------------+---------+---------+---------+
Component matrix
+--------------+-------+-------+
| | PC_1 | PC_2 |
+--------------+-------+-------+
| MapIt: laugh | -.050 | .998 |
| MapIt: place | .925 | .093 |
| MapIt: story | .928 | -.039 |
+--------------+-------+-------+
Traditional Kaiser criterion (k>1) returns 2 factors
== Parallel Analysis
Bootstrap Method: random
Uses SMC: No
Correlation Matrix type : correlation_matrix
Number of variables: 3
Number of cases: 116
Number of iterations: 50
Number or factors to preserve: 1
Eigenvalues
+---+-----------------+----------------------+--------+-----------+
| n | data eigenvalue | generated eigenvalue | p.95 | preserve? |
+---+-----------------+----------------------+--------+-----------+
| 1 | 1.7191 | 1.1447 | 1.2741 | Yes |
| 2 | 1.0053 | 0.9982 | 1.0575 | |
| 3 | 0.2755 | 0.8571 | 0.9384 | |
+---+-----------------+----------------------+--------+-----------+
Parallel Analysis returns 1 factors to preserve
MapIt: creation: [100, 86, 15, 100, 100, 7, 9, 18, 3, 4, 43, 11, 17, 41, 13, 15, 14, 3, 2, 9, 5] ...
MapIt: song: [2, 100, 3, 4, 3, 7, 1, 25, 12, 1, 87, 3, 1, 4, 31, 58, 22, 1, 0, 5, 6] ...
MapIt: stop: [14, 100, 100, 45, 14, 6, 15, 53, 31, 4, 60, 1, 4, 29, 1, 12, 12, 1, 1, 11, 4] ...
Analysis 2014-07-06 12:26:12 -0700
= Statsample::Factor::ParallelAnalysis
There are 3 real factors on data
== Principal Component Analysis
Number of factors: 1
Communalities
+-----------------+---------+------------+--------+
| Variable | Initial | Extraction | % |
+-----------------+---------+------------+--------+
| MapIt: creation | 1.000 | 0.375 | 37.521 |
| MapIt: song | 1.000 | 0.301 | 30.148 |
| MapIt: stop | 1.000 | 0.666 | 66.595 |
+-----------------+---------+------------+--------+
Total Variance Explained
+-------------+---------+---------+---------+
| Component | E.Total | % | Cum. % |
+-------------+---------+---------+---------+
| Component 1 | 1.343 | 44.754% | 44.754 |
| Component 2 | 0.995 | 33.152% | 77.907 |
| Component 3 | 0.663 | 22.093% | 100.000 |
+-------------+---------+---------+---------+
Component matrix
+-----------------+------+
| | PC_1 |
+-----------------+------+
| MapIt: creation | .613 |
| MapIt: song | .549 |
| MapIt: stop | .816 |
+-----------------+------+
Traditional Kaiser criterion (k>1) returns 1 factors
== Parallel Analysis
Bootstrap Method: random
Uses SMC: No
Correlation Matrix type : correlation_matrix
Number of variables: 3
Number of cases: 101
Number of iterations: 50
Number or factors to preserve: 1
Eigenvalues
+---+-----------------+----------------------+--------+-----------+
| n | data eigenvalue | generated eigenvalue | p.95 | preserve? |
+---+-----------------+----------------------+--------+-----------+
| 1 | 1.3426 | 1.1609 | 1.2936 | Yes |
| 2 | 0.9946 | 0.9922 | 1.0570 | |
| 3 | 0.6628 | 0.8470 | 0.9506 | |
+---+-----------------+----------------------+--------+-----------+
Parallel Analysis returns 1 factors to preserve
MapIt: flower: [24, 46, 26, 33, 43, 97, 56, 57, 46, 33, 14, 33, 53, 39, 26, 19, 18, 29, 40, 79, 25] ...
MapIt: star: [8, 53, 17, 5, 19, 17, 47, 94, 7, 6, 10, 89, 32, 47, 18, 6, 7, 6, 2, 31, 6] ...
MapIt: smoke: [72, 33, 52, 94, 2, 99, 99, 82, 33, 23, 45, 80, 45, 77, 56, 17, 13, 56, 17, 87, 63] ...
Analysis 2014-07-06 12:26:38 -0700
= Statsample::Factor::ParallelAnalysis
There are 3 real factors on data
== Principal Component Analysis
Number of factors: 1
Communalities
+---------------+---------+------------+--------+
| Variable | Initial | Extraction | % |
+---------------+---------+------------+--------+
| MapIt: flower | 1.000 | 0.616 | 61.624 |
| MapIt: smoke | 1.000 | 0.409 | 40.863 |
| MapIt: star | 1.000 | 0.364 | 36.394 |
+---------------+---------+------------+--------+
Total Variance Explained
+-------------+---------+---------+---------+
| Component | E.Total | % | Cum. % |
+-------------+---------+---------+---------+
| Component 1 | 1.389 | 46.294% | 46.294 |
| Component 2 | 0.922 | 30.718% | 77.011 |
| Component 3 | 0.690 | 22.989% | 100.000 |
+-------------+---------+---------+---------+
Component matrix
+---------------+------+
| | PC_1 |
+---------------+------+
| MapIt: flower | .785 |
| MapIt: smoke | .639 |
| MapIt: star | .603 |
+---------------+------+
Traditional Kaiser criterion (k>1) returns 1 factors
== Parallel Analysis
Bootstrap Method: random
Uses SMC: No
Correlation Matrix type : correlation_matrix
Number of variables: 3
Number of cases: 103
Number of iterations: 50
Number or factors to preserve: 1
Eigenvalues
+---+-----------------+----------------------+--------+-----------+
| n | data eigenvalue | generated eigenvalue | p.95 | preserve? |
+---+-----------------+----------------------+--------+-----------+
| 1 | 1.3888 | 1.1546 | 1.2549 | Yes |
| 2 | 0.9215 | 0.9946 | 1.0545 | |
| 3 | 0.6897 | 0.8508 | 0.9258 | |
+---+-----------------+----------------------+--------+-----------+
Parallel Analysis returns 1 factors to preserve
MapIt: company: [41, 36, 7, 10, 12, 24, 16, 24, 3, 4, 8, 49, 20, 63, 8, 17, 4, 3, 10, 5, 2] ...
MapIt: moon: [63, 3, 31, 12, 4, 27, 17, 18, 48, 21, 14, 38, 53, 66, 55, 45, 19, 30, 29, 44, 80] ...
MapIt: cat: [42, 46, 74, 40, 12, 99, 33, 48, 46, 37, 85, 86, 55, 64, 38, 41, 70, 44, 99, 10, 82] ...
Analysis 2014-07-06 12:27:03 -0700
= Statsample::Factor::ParallelAnalysis
There are 3 real factors on data
== Principal Component Analysis
Number of factors: 1
Communalities
+----------------+---------+------------+--------+
| Variable | Initial | Extraction | % |
+----------------+---------+------------+--------+
| MapIt: cat | 1.000 | 0.467 | 46.736 |
| MapIt: company | 1.000 | 0.406 | 40.557 |
| MapIt: moon | 1.000 | 0.571 | 57.102 |
+----------------+---------+------------+--------+
Total Variance Explained
+-------------+---------+---------+---------+
| Component | E.Total | % | Cum. % |
+-------------+---------+---------+---------+
| Component 1 | 1.444 | 48.131% | 48.131 |
| Component 2 | 0.849 | 28.287% | 76.419 |
| Component 3 | 0.707 | 23.581% | 100.000 |
+-------------+---------+---------+---------+
Component matrix
+----------------+------+
| | PC_1 |
+----------------+------+
| MapIt: cat | .684 |
| MapIt: company | .637 |
| MapIt: moon | .756 |
+----------------+------+
Traditional Kaiser criterion (k>1) returns 1 factors
== Parallel Analysis
Bootstrap Method: random
Uses SMC: No
Correlation Matrix type : correlation_matrix
Number of variables: 3
Number of cases: 136
Number of iterations: 50
Number or factors to preserve: 1
Eigenvalues
+---+-----------------+----------------------+--------+-----------+
| n | data eigenvalue | generated eigenvalue | p.95 | preserve? |
+---+-----------------+----------------------+--------+-----------+
| 1 | 1.4439 | 1.1443 | 1.2544 | Yes |
| 2 | 0.8486 | 1.0016 | 1.0728 | |
| 3 | 0.7074 | 0.8541 | 0.9415 | |
+---+-----------------+----------------------+--------+-----------+
Parallel Analysis returns 1 factors to preserve