Skip to content

Instantly share code, notes, and snippets.

@Zhomart
Last active August 29, 2015 14:03
Show Gist options
  • Save Zhomart/c625dcd4624875ed1512 to your computer and use it in GitHub Desktop.
Save Zhomart/c625dcd4624875ed1512 to your computer and use it in GitHub Desktop.
PCA for Batch 1,2: inter metrics

Batch 1

Batch 1 - "MapIt: story". originality_raw, fluency_raw, divergency_raw

MapIt: story-originality_raw: [0, 0, 100, 83, 0, 0, 1, 28, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0] ...
MapIt: story-fluency_raw: [1, 3, 3, 4, 1, 2, 4, 3, 1, 3, 1, 3, 1, 2, 1, 1, 4, 2, 1, 2, 1] ...
MapIt: story-divergency_raw: [0, 3, 3, 3, 0, 2, 3, 3, 0, 2, 0, 3, 0, 2, 0, 0, 2, 2, 0, 2, 0] ...

Analysis 2014-07-06 12:34:24 -0700
= Statsample::Factor::ParallelAnalysis
  There are 3 real factors on data
  == Principal Component Analysis
    Number of factors: 1
    Communalities
+------------------------------+---------+------------+--------+
|           Variable           | Initial | Extraction |   %    |
+------------------------------+---------+------------+--------+
| MapIt: story-divergency_raw  | 1.000   | 0.588      | 58.835 |
| MapIt: story-fluency_raw     | 1.000   | 0.747      | 74.715 |
| MapIt: story-originality_raw | 1.000   | 0.377      | 37.654 |
+------------------------------+---------+------------+--------+

    Total Variance Explained
+-------------+---------+---------+---------+
|  Component  | E.Total |    %    | Cum. %  |
+-------------+---------+---------+---------+
| Component 1 | 1.712   | 57.068% | 57.068  |
| Component 2 | 0.847   | 28.228% | 85.296  |
| Component 3 | 0.441   | 14.704% | 100.000 |
+-------------+---------+---------+---------+

    Component matrix
+------------------------------+------+
|                              | PC_1 |
+------------------------------+------+
| MapIt: story-divergency_raw  | .767 |
| MapIt: story-fluency_raw     | .864 |
| MapIt: story-originality_raw | .614 |
+------------------------------+------+

  Traditional Kaiser criterion (k>1) returns 1 factors
  == Parallel Analysis
    Bootstrap Method: random
    Uses SMC: No
    Correlation Matrix type : correlation_matrix
    Number of variables: 3
    Number of cases: 118
    Number of iterations: 50
    Number or factors to preserve: 1
    Eigenvalues
+---+-----------------+----------------------+--------+-----------+
| n | data eigenvalue | generated eigenvalue |  p.95  | preserve? |
+---+-----------------+----------------------+--------+-----------+
| 1 | 1.7120          | 1.1347               | 1.2223 | Yes       |
| 2 | 0.8468          | 0.9934               | 1.0297 |           |
| 3 | 0.4411          | 0.8719               | 0.9627 |           |
+---+-----------------+----------------------+--------+-----------+

  Parallel Analysis returns 1 factors to preserve

Batch 1 - "MapIt: laugh". originality_raw, fluency_raw, divergency_raw

MapIt: laugh-originality_raw: [100, 63, 91, 0, 0, 91, 56, 0, 56, 0, 0, 91, 0, 56, 5, 0, 63, 0, 5, 19, 10] ...
MapIt: laugh-fluency_raw: [4, 3, 5, 1, 1, 6, 4, 1, 4, 1, 1, 5, 1, 2, 2, 1, 4, 1, 2, 3, 3] ...
MapIt: laugh-divergency_raw: [3, 2, 1, 0, 0, 1, 2, 0, 2, 0, 0, 1, 0, 2, 2, 0, 2, 0, 2, 3, 2] ...

Analysis 2014-07-06 12:35:58 -0700
= Statsample::Factor::ParallelAnalysis
  There are 3 real factors on data
  == Principal Component Analysis
    Number of factors: 1
    Communalities
+------------------------------+---------+------------+--------+
|           Variable           | Initial | Extraction |   %    |
+------------------------------+---------+------------+--------+
| MapIt: laugh-divergency_raw  | 1.000   | 0.519      | 51.928 |
| MapIt: laugh-fluency_raw     | 1.000   | 0.831      | 83.077 |
| MapIt: laugh-originality_raw | 1.000   | 0.789      | 78.859 |
+------------------------------+---------+------------+--------+

    Total Variance Explained
+-------------+---------+---------+---------+
|  Component  | E.Total |    %    | Cum. %  |
+-------------+---------+---------+---------+
| Component 1 | 2.139   | 71.288% | 71.288  |
| Component 2 | 0.639   | 21.298% | 92.586  |
| Component 3 | 0.222   | 7.414%  | 100.000 |
+-------------+---------+---------+---------+

    Component matrix
+------------------------------+------+
|                              | PC_1 |
+------------------------------+------+
| MapIt: laugh-divergency_raw  | .721 |
| MapIt: laugh-fluency_raw     | .911 |
| MapIt: laugh-originality_raw | .888 |
+------------------------------+------+

  Traditional Kaiser criterion (k>1) returns 1 factors
  == Parallel Analysis
    Bootstrap Method: random
    Uses SMC: No
    Correlation Matrix type : correlation_matrix
    Number of variables: 3
    Number of cases: 117
    Number of iterations: 50
    Number or factors to preserve: 1
    Eigenvalues
+---+-----------------+----------------------+--------+-----------+
| n | data eigenvalue | generated eigenvalue |  p.95  | preserve? |
+---+-----------------+----------------------+--------+-----------+
| 1 | 2.1386          | 1.1429               | 1.2725 | Yes       |
| 2 | 0.6389          | 0.9936               | 1.0471 |           |
| 3 | 0.2224          | 0.8634               | 0.9332 |           |
+---+-----------------+----------------------+--------+-----------+

  Parallel Analysis returns 1 factors to preserve```

Batch 1 - "MapIt: place". originality_raw, fluency_raw, divergency_raw

MapIt: place-originality_raw: [0, 0, 100, 8, 0, 0, 0, 44, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0] ...
MapIt: place-fluency_raw: [1, 1, 3, 3, 1, 2, 1, 5, 1, 2, 1, 4, 1, 1, 4, 1, 1, 4, 2, 2, 3] ...
MapIt: place-divergency_raw: [0, 0, 3, 3, 0, 2, 0, 3, 0, 2, 0, 3, 0, 0, 2, 0, 0, 3, 2, 2, 3] ...

Analysis 2014-07-06 12:37:20 -0700
= Statsample::Factor::ParallelAnalysis
  There are 3 real factors on data
  == Principal Component Analysis
    Number of factors: 1
    Communalities
+------------------------------+---------+------------+--------+
|           Variable           | Initial | Extraction |   %    |
+------------------------------+---------+------------+--------+
| MapIt: place-divergency_raw  | 1.000   | 0.635      | 63.545 |
| MapIt: place-fluency_raw     | 1.000   | 0.726      | 72.586 |
| MapIt: place-originality_raw | 1.000   | 0.389      | 38.912 |
+------------------------------+---------+------------+--------+

    Total Variance Explained
+-------------+---------+---------+---------+
|  Component  | E.Total |    %    | Cum. %  |
+-------------+---------+---------+---------+
| Component 1 | 1.750   | 58.348% | 58.348  |
| Component 2 | 0.802   | 26.747% | 85.095  |
| Component 3 | 0.447   | 14.905% | 100.000 |
+-------------+---------+---------+---------+

    Component matrix
+------------------------------+------+
|                              | PC_1 |
+------------------------------+------+
| MapIt: place-divergency_raw  | .797 |
| MapIt: place-fluency_raw     | .852 |
| MapIt: place-originality_raw | .624 |
+------------------------------+------+

  Traditional Kaiser criterion (k>1) returns 1 factors
  == Parallel Analysis
    Bootstrap Method: random
    Uses SMC: No
    Correlation Matrix type : correlation_matrix
    Number of variables: 3
    Number of cases: 125
    Number of iterations: 50
    Number or factors to preserve: 1
    Eigenvalues
+---+-----------------+----------------------+--------+-----------+
| n | data eigenvalue | generated eigenvalue |  p.95  | preserve? |
+---+-----------------+----------------------+--------+-----------+
| 1 | 1.7504          | 1.1464               | 1.2856 | Yes       |
| 2 | 0.8024          | 0.9893               | 1.0292 |           |
| 3 | 0.4471          | 0.8642               | 0.9490 |           |
+---+-----------------+----------------------+--------+-----------+

  Parallel Analysis returns 1 factors to preserve```

Batch 2

Batch 2 - "MapIt: creation". originality_raw, fluency_raw, divergency_raw

MapIt: creation-originality_raw: [100, 86, 15, 100, 100, 7, 9, 18, 3, 4, 43, 46, 11, 17, 41, 13, 15, 14, 3, 2, 9] ...
MapIt: creation-fluency_raw: [22, 6, 4, 7, 2, 10, 5, 6, 8, 5, 4, 9, 9, 6, 11, 5, 6, 21, 6, 2, 5] ...
MapIt: creation-divergency_raw: [1, 2, 3, 5, 2, 1, 2, 2, 1, 3, 2, 2, 2, 2, 2, 3, 1, 1, 3, 2, 2] ...

Analysis 2014-07-06 12:37:57 -0700
= Statsample::Factor::ParallelAnalysis
  There are 3 real factors on data
  == Principal Component Analysis
    Number of factors: 2
    Communalities
+---------------------------------+---------+------------+--------+
|            Variable             | Initial | Extraction |   %    |
+---------------------------------+---------+------------+--------+
| MapIt: creation-divergency_raw  | 1.000   | 0.764      | 76.404 |
| MapIt: creation-fluency_raw     | 1.000   | 0.837      | 83.734 |
| MapIt: creation-originality_raw | 1.000   | 0.871      | 87.118 |
+---------------------------------+---------+------------+--------+

    Total Variance Explained
+-------------+---------+---------+---------+
|  Component  | E.Total |    %    | Cum. %  |
+-------------+---------+---------+---------+
| Component 1 | 1.383   | 46.113% | 46.113  |
| Component 2 | 1.089   | 36.306% | 82.419  |
| Component 3 | 0.527   | 17.581% | 100.000 |
+-------------+---------+---------+---------+

    Component matrix
+---------------------------------+-------+------+
|                                 | PC_1  | PC_2 |
+---------------------------------+-------+------+
| MapIt: creation-divergency_raw  | -.873 | .042 |
| MapIt: creation-fluency_raw     | .629  | .665 |
| MapIt: creation-originality_raw | -.475 | .803 |
+---------------------------------+-------+------+

  Traditional Kaiser criterion (k>1) returns 2 factors
  == Parallel Analysis
    Bootstrap Method: random
    Uses SMC: No
    Correlation Matrix type : correlation_matrix
    Number of variables: 3
    Number of cases: 108
    Number of iterations: 50
    Number or factors to preserve: 2
    Eigenvalues
+---+-----------------+----------------------+--------+-----------+
| n | data eigenvalue | generated eigenvalue |  p.95  | preserve? |
+---+-----------------+----------------------+--------+-----------+
| 1 | 1.3834          | 1.1367               | 1.2312 | Yes       |
| 2 | 1.0892          | 0.9962               | 1.0446 | Yes       |
| 3 | 0.5274          | 0.8671               | 0.9461 |           |
+---+-----------------+----------------------+--------+-----------+

  Parallel Analysis returns 2 factors to preserve

Batch 2 - "MapIt: song". originality_raw, fluency_raw, divergency_raw

MapIt: song-originality_raw: [2, 100, 3, 4, 3, 7, 1, 25, 12, 1, 87, 3, 1, 4, 31, 58, 22, 1, 0, 5, 6] ...
MapIt: song-fluency_raw: [7, 9, 9, 7, 4, 11, 9, 8, 15, 4, 4, 5, 8, 7, 5, 5, 15, 2, 3, 6, 7] ...
MapIt: song-divergency_raw: [2, 6, 1, 1, 3, 2, 2, 2, 1, 3, 3, 1, 1, 3, 2, 2, 1, 2, 3, 1, 2] ...

Analysis 2014-07-06 12:38:37 -0700
= Statsample::Factor::ParallelAnalysis
  There are 3 real factors on data
  == Principal Component Analysis
    Number of factors: 1
    Communalities
+-----------------------------+---------+------------+--------+
|          Variable           | Initial | Extraction |   %    |
+-----------------------------+---------+------------+--------+
| MapIt: song-divergency_raw  | 1.000   | 0.719      | 71.880 |
| MapIt: song-fluency_raw     | 1.000   | 0.317      | 31.699 |
| MapIt: song-originality_raw | 1.000   | 0.457      | 45.671 |
+-----------------------------+---------+------------+--------+

    Total Variance Explained
+-------------+---------+---------+---------+
|  Component  | E.Total |    %    | Cum. %  |
+-------------+---------+---------+---------+
| Component 1 | 1.492   | 49.750% | 49.750  |
| Component 2 | 0.965   | 32.175% | 81.925  |
| Component 3 | 0.542   | 18.075% | 100.000 |
+-------------+---------+---------+---------+

    Component matrix
+-----------------------------+-------+
|                             | PC_1  |
+-----------------------------+-------+
| MapIt: song-divergency_raw  | .848  |
| MapIt: song-fluency_raw     | -.563 |
| MapIt: song-originality_raw | .676  |
+-----------------------------+-------+

  Traditional Kaiser criterion (k>1) returns 1 factors
  == Parallel Analysis
    Bootstrap Method: random
    Uses SMC: No
    Correlation Matrix type : correlation_matrix
    Number of variables: 3
    Number of cases: 104
    Number of iterations: 50
    Number or factors to preserve: 1
    Eigenvalues
+---+-----------------+----------------------+--------+-----------+
| n | data eigenvalue | generated eigenvalue |  p.95  | preserve? |
+---+-----------------+----------------------+--------+-----------+
| 1 | 1.4925          | 1.1537               | 1.2847 | Yes       |
| 2 | 0.9653          | 1.0008               | 1.0643 |           |
| 3 | 0.5422          | 0.8455               | 0.9503 |           |
+---+-----------------+----------------------+--------+-----------+

  Parallel Analysis returns 1 factors to preserve```

Batch 2 - "MapIt: stop". originality_raw, fluency_raw, divergency_raw

MapIt: stop-originality_raw: [14, 100, 100, 45, 14, 6, 15, 53, 31, 4, 60, 1, 4, 29, 1, 12, 12, 1, 1, 1, 11] ...
MapIt: stop-fluency_raw: [6, 9, 5, 5, 3, 7, 4, 7, 11, 3, 6, 3, 5, 6, 6, 4, 11, 4, 2, 5, 5] ...
MapIt: stop-divergency_raw: [2, 3, 3, 2, 3, 1, 3, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 2, 3] ...

Analysis 2014-07-06 12:39:00 -0700
= Statsample::Factor::ParallelAnalysis
  There are 3 real factors on data
  == Principal Component Analysis
    Number of factors: 2
    Communalities
+-----------------------------+---------+------------+--------+
|          Variable           | Initial | Extraction |   %    |
+-----------------------------+---------+------------+--------+
| MapIt: stop-divergency_raw  | 1.000   | 0.728      | 72.831 |
| MapIt: stop-fluency_raw     | 1.000   | 0.804      | 80.412 |
| MapIt: stop-originality_raw | 1.000   | 0.907      | 90.653 |
+-----------------------------+---------+------------+--------+

    Total Variance Explained
+-------------+---------+---------+---------+
|  Component  | E.Total |    %    | Cum. %  |
+-------------+---------+---------+---------+
| Component 1 | 1.413   | 47.090% | 47.090  |
| Component 2 | 1.026   | 34.208% | 81.298  |
| Component 3 | 0.561   | 18.702% | 100.000 |
+-------------+---------+---------+---------+

    Component matrix
+-----------------------------+-------+------+
|                             | PC_1  | PC_2 |
+-----------------------------+-------+------+
| MapIt: stop-divergency_raw  | -.853 | .027 |
| MapIt: stop-fluency_raw     | .706  | .553 |
| MapIt: stop-originality_raw | -.433 | .848 |
+-----------------------------+-------+------+

  Traditional Kaiser criterion (k>1) returns 2 factors
  == Parallel Analysis
    Bootstrap Method: random
    Uses SMC: No
    Correlation Matrix type : correlation_matrix
    Number of variables: 3
    Number of cases: 103
    Number of iterations: 50
    Number or factors to preserve: 1
    Eigenvalues
+---+-----------------+----------------------+--------+-----------+
| n | data eigenvalue | generated eigenvalue |  p.95  | preserve? |
+---+-----------------+----------------------+--------+-----------+
| 1 | 1.4127          | 1.1629               | 1.2716 | Yes       |
| 2 | 1.0262          | 0.9970               | 1.0623 |           |
| 3 | 0.5610          | 0.8401               | 0.9332 |           |
+---+-----------------+----------------------+--------+-----------+

  Parallel Analysis returns 1 factors to preserve
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment