Last active
February 25, 2016 10:28
-
-
Save Zolomon/08c369e90ebed62be079 to your computer and use it in GitHub Desktop.
laboration 2 - applied mathematics
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
startlab2; | |
whos; | |
% close all; | |
%% %%%%%%%%% 2.2 | |
% plot the theta function (t > t_0 = 1, t < t_0 = 0) | |
%figure;plot(t, theta); | |
% plot the DeltaDirac-function (t = t_0 ==> 1, else 0) | |
%figure;plot(t, delta); | |
%figure | |
%plot(t, sin(t).*(t>0) + cos(t).*((5-t)>0)); | |
%pause; | |
%close all; | |
%%%%%%%%%%%% end of 2.2 | |
%% %%%%%%%%%%% 2.3 | |
krekt = (t>0)-(t>1); | |
triangel = (t+1).*(t>-1)-2*t.*(t>0)+(t-1).*(t>1); | |
kcos = cos(t).*(t>0); | |
% figure; | |
% hold on | |
% plot(t, krekt); | |
% plot(t, triangel); | |
% plot(t, kcos); | |
% hold off | |
% | |
%% %%%%%%%%%%% 2.4 | |
% pause; | |
% close all; | |
% y=lpfilter(theta); | |
% plot(t,y); | |
% | |
%% %%%%%%%%%%% 2.5 | |
% pause; close all; | |
% plotsyst('lpfilter',theta); | |
%% %%%%%%%%%% 2.6 | |
% % pause; | |
% % The one-wheeled car. | |
% % input signal f(t) = theta(t) represents the road height | |
% % output signal y = S*f(t) represents the cars position as height, viewed | |
% % in cross-section from the side, like in Super Mario. | |
% close all; | |
% plotsyst('bil',theta); | |
%% %%%%%%%%%% 2.7 | |
% % In this model, the input signal is | |
% plotsyst('brygga', theta); | |
% % Svar: Ja, det tror jag. Eftersom y(t) = S(t)*f(t) borde vi ju kunna styra | |
% % hur utsignalen genom att styra R och C för att få den utsignal vi vill. | |
% % Det står även i kursboken att | |
%% %%%%%%%%% 2.8 | |
% % hold | |
% figure; | |
% subplot(2,2,1); | |
% | |
% plot(t, delay(triangel, 2)); | |
% title('triangel, 2 shift'); | |
% xlabel('insignal'); | |
% grid; | |
% | |
% subplot(2,2,3); | |
% plot(t, delay(triangel, -3)); | |
% xlabel('insignal'); | |
% title('triangel, -3 shift'); | |
% grid; | |
% | |
% subplot(2,2,2); | |
% plot(t, delay(kcos, 2)); | |
% title('kcos, 2 shift'); | |
% xlabel('insignal'); | |
% grid; | |
% | |
% subplot(2,2,4); | |
% plot(t, delay(kcos, -3)); | |
% title('kcos, -3 shift'); | |
% grid; | |
%% %%%%%%%% 2.9 | |
% figure; | |
% close all; | |
% plotsyst('differentiator', triangel); | |
% plotsyst('differentiator', krekt); | |
% plotsyst('differentiator', theta); | |
% plotsyst('differentiator', delta); | |
% plotsyst('differentiator', kcos); | |
% | |
% % Svar: Spikarna kan representeras med hjälp av DeltaDirac-funktioner med | |
% % DeltaDirac(t - a) där spikarna uppstår. | |
%% %%%%%%% 2.11 | |
% lintest('lpfilter', triangel, kcos, -3, 4); | |
%% %%%%%%%% 2.12 | |
% plotsyst('lpfilter', triangel); | |
% plotsyst('lpfilter', delay(triangel, 2)); | |
% plotsyst('lpfilter', delay(triangel, -3)); | |
% delaytest('lpfilter', triangel, 2); | |
% delaytest('lpfilter', triangel, -3); | |
% delaytest('lpfilter', triangel, 1); | |
%% %%%%%%%%%% 2.14 | |
% plotsyst('lpfilter', triangel + delay(triangel, -5) + delay(triangel, -15)); | |
%% %%%%%%%%%% 2.15 | |
% close all; | |
% lintest('syst1', theta, theta, 1,1); | |
% lintest('syst2', theta, theta, 1,1); | |
% lintest('syst3', theta, theta, 1,1); % Not linear? | |
% lintest('syst4', theta, theta, 1,1); | |
% lintest('syst5', theta, theta, 1,1); | |
% lintest('syst6', theta, theta, 1,1); | |
% | |
% lintest('syst1', theta,1-theta,1,1); % Not linear? | |
% lintest('syst2', theta,1-theta,1,1); | |
% lintest('syst3', theta,1-theta,1,1); | |
% lintest('syst4', theta,1-theta,1,1); | |
% lintest('syst5', theta,1-theta,1,1); % Not lienar? | |
% lintest('syst6', theta,1-theta,1,1); | |
% How am I supposed to test linearity? It's not linear if for any | |
% y(t) != 0? | |
%plotsyst('lpfilter', (1-theta)); | |
close all; | |
% delaytest('syst1', triangel, 2); | |
% delaytest('syst1', triangel, -3); | |
% | |
% delaytest('syst2', triangel, 2); | |
% delaytest('syst2', triangel, -13); | |
% % svar: Den här verkar ju INTE vara tidsvariant!! | |
% | |
% delaytest('syst3', triangel, 2); | |
% delaytest('syst3', triangel, -13); | |
% | |
% delaytest('syst4', triangel, 2); | |
% delaytest('syst4', triangel, -13); | |
% delaytest('syst5', triangel, 12); | |
% delaytest('syst5', triangel, -13); | |
% delaytest('syst6', triangel, 12); | |
% delaytest('syst6', triangel, -13); | |
% % svar: Den här verkar ju INTE vara tidsvariant!! | |
% delaytest('syst1', delta, 2); | |
% delaytest('syst1', delta, -3); | |
% delaytest('syst1', delta, 10); | |
% pause | |
% delaytest('syst2', delta, 2); | |
% delaytest('syst2', delta, -3); | |
% delaytest('syst2', delta, 10); | |
% pause | |
% delaytest('syst3', delta, 2); | |
% delaytest('syst3', delta, -3); | |
% delaytest('syst3', delta, 10); | |
% pause | |
% delaytest('syst4', delta, 2); | |
% delaytest('syst4', delta, -3); | |
% delaytest('syst4', delta, 10); | |
% pause | |
% delaytest('syst5', delta, 2); | |
% delaytest('syst5', delta, -3); | |
% delaytest('syst5', delta, 10); | |
% pause | |
% delaytest('syst6', delta, 2); | |
% delaytest('syst6', delta, -3); | |
% delaytest('syst6', delta, 10); | |
%% %%%%%%%%%%%%% 2.16 | |
h = syst1(delta); | |
y = falt(h, triangel); | |
plotsyst('syst1', triangel); | |
figure; | |
subplot(211); | |
plot(t,y); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment