Last active
July 11, 2019 00:40
-
-
Save Zyst/75897b9d32c64f362d9647f17cc5e0fd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
A program that takes Mexican Santander's exported file, and outputs a YNAB | |
compatible CSV file | |
""" | |
import pandas as pd | |
RENT = "Immediate Obligations: Rent 1st" | |
TECMILENIO = "Immediate Obligations: Tecmilenio 1st" | |
GAS = "Immediate Obligations: Gas 13th" | |
AXTEL = "Immediate Obligations: Axtel 14th" | |
CLEANING = "Immediate Obligations: Cleaning" | |
CLOTHES_WASH = "Immediate Obligations: Clothes wash" | |
GROCERIES = "Immediate Obligations: Groceries" | |
LIGHT = "Immediate Obligations: Light" | |
SKRITTER = "Immediate Obligations: Skritter Month 14th" | |
HAIR_CUTS = "Immediate Obligations: Haircuts" | |
TRANSPORTATION = "True Expenses: Transportation" | |
EATING_OUT = "Just for Fun: Eating Out" | |
SODA = "Just for Fun: Soda/Trash Food" | |
FUN_MONEY = "Just for Fun: Fun Money" | |
def month_to_number(date_string): | |
date = date_string.replace("Ene", "01") | |
date = date.replace("Feb", "02") | |
date = date.replace("Mar", "03") | |
date = date.replace("Abr", "04") | |
date = date.replace("May", "05") | |
date = date.replace("Jun", "06") | |
date = date.replace("Jul", "07") | |
date = date.replace("Ago", "08") | |
date = date.replace("Sep", "09") | |
date = date.replace("Oct", "10") | |
date = date.replace("Nov", "11") | |
date = date.replace("Dic", "12") | |
return date | |
def create_dict(payee, category="", memo=""): | |
return { | |
"Payee": payee, | |
"Category": category, | |
"Memo": memo | |
} | |
def convert_payee(payee): | |
if "7 ELEVEN" in payee: | |
return create_dict("7eleven", SODA) | |
elif "OXXO" in payee: | |
return create_dict("Oxxo", SODA) | |
elif "EXTRA" in payee: | |
return create_dict("Extra", SODA) | |
elif "RAPPI" in payee: | |
return create_dict("Rappi", SODA) | |
elif "CREDITO" in payee: | |
return create_dict("Vexi credit card", SODA) | |
elif "AY649" in payee: | |
return create_dict("Rent", RENT) | |
elif "TEC" in payee: | |
return create_dict("Tecmilenio", TECMILENIO) | |
elif "977100703762RFC" in payee: | |
return create_dict("CFE", LIGHT) | |
elif "1110542780354" in payee: | |
return create_dict("Regio Gas", GAS) | |
elif "CO401" in payee: | |
return create_dict("Gas", GAS) | |
elif "ALIADA" in payee: | |
return create_dict("Aliada", CLEANING) | |
elif "AXTEL" in payee: | |
return create_dict("Axtel", AXTEL) | |
elif "PIGNORIS" in payee: | |
return create_dict("Clothes wash", CLOTHES_WASH) | |
elif "BARBER SHOP" in payee: | |
return create_dict("The Barber Shop", HAIR_CUTS) | |
elif "SKRITTER" in payee: | |
return create_dict("Skritter", SKRITTER) | |
elif "SUPERAM" in payee: | |
return create_dict("Super", GROCERIES) | |
elif "WALMART" in payee: | |
return create_dict("Walmart", GROCERIES) | |
elif "CASA DE TONO" in payee: | |
return create_dict("Casa Tono", EATING_OUT) | |
elif "MCCARHTYS" in payee: | |
return create_dict("McCarthys", EATING_OUT) | |
elif "EL REGRESO" in payee: | |
return create_dict("El Regreso", EATING_OUT) | |
elif "EL ASADERO" in payee: | |
return create_dict("El asadero", EATING_OUT) | |
elif "HOOTERS" in payee: | |
return create_dict("Hooters", EATING_OUT) | |
elif "LA POSTA" in payee: | |
return create_dict("La Posta", EATING_OUT) | |
elif "NAGAOKA" in payee: | |
return create_dict("Japanese food Nagaoka", EATING_OUT) | |
elif "HAMBURGUESAS HM" in payee: | |
return create_dict("Hamburguesas HM", EATING_OUT) | |
elif "HOOKAH" in payee: | |
return create_dict("Hookah Lounge", FUN_MONEY) | |
elif "UBER" in payee: | |
return create_dict("Uber", TRANSPORTATION) | |
elif "GRIN" in payee: | |
return create_dict("Grin", TRANSPORTATION) | |
elif "ATM" in payee: | |
return create_dict("ATM Widthrawal") | |
elif "AMAZON" in payee: | |
return create_dict("Amazon") | |
elif "GLOBAL SYSTEMS" in payee: | |
return create_dict("Globant") | |
return create_dict(payee) | |
table = pd.read_html("K:\\Downloads\\export.xls", | |
header=3, keep_default_na=False)[0] | |
results = { | |
"Date": [], | |
"Payee": [], | |
"Category": [], | |
"Memo": [], | |
"Outflow": [], | |
"Inflow": [] | |
} | |
for row in table.values: | |
info = convert_payee(row[3]) | |
# We don't wanna add dinero creciente transactions | |
if "DINERO CRECIENTE" not in info["Payee"]: | |
results["Date"].append(month_to_number(row[0])) | |
results["Payee"].append(info["Payee"]) | |
results["Category"].append(info["Category"]) | |
results["Memo"].append(info["Memo"]) | |
results["Outflow"].append(row[4]) | |
results["Inflow"].append(row[5]) | |
# print(results) | |
dataFrame = pd.DataFrame(results) | |
dataFrame.to_csv("C:\\Users\\Zyst\\Desktop\\bank.csv", | |
encoding='utf-8', | |
index=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment