Skip to content

Instantly share code, notes, and snippets.

@a-agmon
Last active February 28, 2020 13:48
Show Gist options
  • Save a-agmon/7ccfeaf598a13f5ba8097dcf51c3dcbe to your computer and use it in GitHub Desktop.
Save a-agmon/7ccfeaf598a13f5ba8097dcf51c3dcbe to your computer and use it in GitHub Desktop.
from keras.models import Model, load_model
from keras.layers import Input, Dense, Dropout
from keras.callbacks import ModelCheckpoint, TensorBoard
from keras import regularizers
input_dim = X_train.shape[1] # the # features
encoding_dim = 8 # first layer
hidden_dim = int(encoding_dim / 2) #hideen layer
nb_epoch = 30
batch_size = 128
learning_rate = 0.1
input_layer = Input(shape=(input_dim, ))
encoder = Dense(encoding_dim, activation="tanh", activity_regularizer=regularizers.l1(10e-5))(input_layer)
encoder = Dense(hidden_dim, activation="relu")(encoder)
decoder = Dense(encoding_dim, activation='relu')(encoder)
decoder = Dense(input_dim, activation='tanh')(decoder)
autoencoder = Model(inputs=input_layer, outputs=decoder)
# ----- some data omitted --------- #
history = autoencoder.fit(X_train, X_train,
epochs=nb_epoch,
batch_size=batch_size,
shuffle=True,
validation_data=(X_test, X_test),
verbose=1,
callbacks=[checkpointer, tensorboard]).history
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment