Created
June 13, 2017 03:52
-
-
Save a-leut/2dda7f509f8453bafa4fbb25ab5b2af9 to your computer and use it in GitHub Desktop.
bayes_log
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
""" https://github.com/blei-lab/edward/blob/master/examples/bayesian_logistic_regression.py | |
Bayesian logistic regression using Hamiltonian Monte Carlo. | |
We visualize the fit. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import edward as ed | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import tensorflow as tf | |
from edward.models import Bernoulli, Normal, Empirical | |
def build_toy_dataset(N, noise_std=0.1): | |
D = 1 | |
X = np.linspace(-6, 6, num=N) | |
y = np.tanh(X) + np.random.normal(0, noise_std, size=N) | |
y[y < 0.5] = 0 | |
y[y >= 0.5] = 1 | |
X = (X - 4.0) / 4.0 | |
X = X.reshape((N, D)) | |
return X, y | |
ed.set_seed(42) | |
N = 40 # number of data points | |
D = 1 # number of features | |
# DATA | |
X_train, y_train = build_toy_dataset(N) | |
# MODEL | |
X = tf.placeholder(tf.float32, [N, D]) | |
w = Normal(loc=tf.zeros(D), scale=3.0 * tf.ones(D)) | |
b = Normal(loc=tf.zeros([]), scale=3.0 * tf.ones([])) | |
y = Bernoulli(logits=ed.dot(X, w) + b) | |
# INFERENCE | |
T = 5000 # number of samples | |
qw = Empirical(params=tf.Variable(tf.random_normal([T, D]))) | |
qb = Empirical(params=tf.Variable(tf.random_normal([T]))) | |
inference = ed.HMC({w: qw, b: qb}, data={X: X_train, y: y_train}) | |
inference.initialize(n_print=10, step_size=0.6) | |
tf.global_variables_initializer().run() | |
# Set up figure. | |
fig = plt.figure(figsize=(8, 8), facecolor='white') | |
ax = fig.add_subplot(111, frameon=False) | |
plt.ion() | |
plt.show(block=False) | |
# Build samples from inferred posterior. | |
n_samples = 50 | |
inputs = np.linspace(-5, 3, num=400, dtype=np.float32).reshape((400, 1)) | |
probs = tf.stack([tf.sigmoid(ed.dot(inputs, qw.sample()) + qb.sample()) | |
for _ in range(n_samples)]) | |
for t in range(inference.n_iter): | |
info_dict = inference.update() | |
inference.print_progress(info_dict) | |
if t % inference.n_print == 0: | |
outputs = probs.eval() | |
# Plot data and functions | |
plt.cla() | |
ax.plot(X_train[:], y_train, 'bx') | |
for s in range(n_samples): | |
ax.plot(inputs[:], outputs[s], alpha=0.2) | |
ax.set_xlim([-5, 3]) | |
ax.set_ylim([-0.5, 1.5]) | |
plt.draw() | |
plt.pause(1.0 / 60.0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment