Created
October 23, 2023 04:03
-
-
Save a1k0n/8ea6516b4946ab36348fb61703dc3194 to your computer and use it in GitHub Desktop.
donut shift and add only
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdint.h> | |
#include <stdio.h> | |
#include <string.h> | |
#include <unistd.h> | |
#include <math.h> | |
#define debug(...) | |
//#define debug printf | |
// torus radii and distance from camera | |
// these are pretty baked-in to other constants now, so it probably won't work | |
// if you change them too much. | |
const int dz = 5, r1 = 1, r2 = 2; | |
// "Magic circle algorithm"? DDA? I've seen this formulation in a few places; | |
// first in Hal Chamberlain's Musical Applications of Microprocessors, but not | |
// sure what to call it, or how to justify it theoretically. It seems to | |
// correctly rotate around a point "near" the origin, without losing magnitude | |
// over long periods of time, as long as there are enough bits of precision in x | |
// and y. I use 14 bits here. | |
#define R(s,x,y) x-=(y>>s); y+=(x>>s) | |
// CORDIC algorithm to find magnitude of |x,y| by rotating the x,y vector onto | |
// the x axis. This also brings vector (x2,y2) along for the ride, and writes | |
// back to x2 -- this is used to rotate the lighting vector from the normal of | |
// the torus surface towards the camera, and thus determine the lighting amount. | |
// We only need to keep one of the two lighting normal coordinates. | |
int length_cordic(int16_t x, int16_t y, int16_t *x2_, int16_t y2) { | |
int x2 = *x2_; | |
if (x < 0) { // start in right half-plane | |
x = -x; | |
x2 = -x2; | |
} | |
for (int i = 0; i < 8; i++) { | |
int t = x; | |
int t2 = x2; | |
if (y < 0) { | |
x -= y >> i; | |
y += t >> i; | |
x2 -= y2 >> i; | |
y2 += t2 >> i; | |
} else { | |
x += y >> i; | |
y -= t >> i; | |
x2 += y2 >> i; | |
y2 -= t2 >> i; | |
} | |
} | |
// divide by 0.625 as a cheap approximation to the 0.607 scaling factor factor | |
// introduced by this algorithm (see https://en.wikipedia.org/wiki/CORDIC) | |
*x2_ = (x2 >> 1) + (x2 >> 3); | |
return (x >> 1) + (x >> 3); | |
} | |
void main() { | |
// high-precision rotation directions, sines and cosines and their products | |
int16_t sB = 0, cB = 16384; | |
int16_t sA = 11583, cA = 11583; | |
int16_t sAsB = 0, cAsB = 0; | |
int16_t sAcB = 11583, cAcB = 11583; | |
for (;;) { | |
int x1_16 = cAcB << 2; | |
// yes this is a multiply but dz is 5 so it's (sb + (sb<<2)) >> 6 effectively | |
int p0x = dz * sB >> 6; | |
int p0y = dz * sAcB >> 6; | |
int p0z = -dz * cAcB >> 6; | |
const int r1i = r1*256; | |
const int r2i = r2*256; | |
int niters = 0; | |
int nnormals = 0; | |
int16_t yincC = (cA >> 6) + (cA >> 5); // 12*cA >> 8; | |
int16_t yincS = (sA >> 6) + (sA >> 5); // 12*sA >> 8; | |
int16_t xincX = (cB >> 7) + (cB >> 6); // 6*cB >> 8; | |
int16_t xincY = (sAsB >> 7) + (sAsB >> 6); // 6*sAsB >> 8; | |
int16_t xincZ = (cAsB >> 7) + (cAsB >> 6); // 6*cAsB >> 8; | |
int16_t ycA = -((cA >> 1) + (cA >> 4)); // -12 * yinc1 = -9*cA >> 4; | |
int16_t ysA = -((sA >> 1) + (sA >> 4)); // -12 * yinc2 = -9*sA >> 4; | |
//int dmin = INT_MAX, dmax = -INT_MAX; | |
for (int j = 0; j < 23; j++, ycA += yincC, ysA += yincS) { | |
int xsAsB = (sAsB >> 4) - sAsB; // -40*xincY | |
int xcAsB = (cAsB >> 4) - cAsB; // -40*xincZ; | |
int16_t vxi14 = (cB >> 4) - cB - sB; // -40*xincX - sB; | |
int16_t vyi14 = ycA - xsAsB - sAcB; | |
int16_t vzi14 = ysA + xcAsB + cAcB; | |
for (int i = 0; i < 79; i++, vxi14 += xincX, vyi14 -= xincY, vzi14 += xincZ) { | |
int t = 512; // (256 * dz) - r2i - r1i; | |
int16_t px = p0x + (vxi14 >> 5); // assuming t = 512, t*vxi>>8 == vxi<<1 | |
int16_t py = p0y + (vyi14 >> 5); | |
int16_t pz = p0z + (vzi14 >> 5); | |
debug("pxyz (%+4d,%+4d,%+4d)\n", px, py, pz); | |
int16_t lx0 = sB >> 2; | |
int16_t ly0 = sAcB - cA >> 2; | |
int16_t lz0 = -cAcB - sA >> 2; | |
for (;;) { | |
int t0, t1, t2, d; | |
int16_t lx = lx0, ly = ly0, lz = lz0; | |
debug("[%2d,%2d] (px, py) = (%d, %d), (lx, ly) = (%d, %d) -> ", j, i, px, py, lx, ly); | |
t0 = length_cordic(px, py, &lx, ly); | |
debug("t0=%d (lx', ly') = (%d, %d)\n", t0, lx, ly); | |
t1 = t0 - r2i; | |
t2 = length_cordic(pz, t1, &lz, lx); | |
d = t2 - r1i; | |
t += d; | |
if (t > 8*256) { | |
putchar(' '); | |
break; | |
} else if (d < 2) { | |
int N = lz >> 9; | |
putchar(".,-~:;!*=#$@"[N > 0 ? N < 12 ? N : 11 : 0]); | |
nnormals++; | |
break; | |
} | |
// todo: shift and add version of this | |
/* | |
if (d < dmin) dmin = d; | |
if (d > dmax) dmax = d; | |
px += d*vxi14 >> 14; | |
py += d*vyi14 >> 14; | |
pz += d*vzi14 >> 14; | |
*/ | |
{ | |
// 11x1.14 fixed point 3x parallel multiply | |
// only 16 bit registers needed; starts from highest bit to lowest | |
// d is about 2..1100, so 11 bits are sufficient | |
int16_t dx = 0, dy = 0, dz = 0; | |
int16_t a = vxi14, b = vyi14, c = vzi14; | |
while (d) { | |
if (d&1024) { | |
dx += a; | |
dy += b; | |
dz += c; | |
} | |
d = (d&1023) << 1; | |
a >>= 1; | |
b >>= 1; | |
c >>= 1; | |
} | |
// we already shifted down 10 bits, so get the last four | |
px += dx >> 4; | |
py += dy >> 4; | |
pz += dz >> 4; | |
} | |
niters++; | |
} | |
} | |
puts(""); | |
} | |
printf("%d iterations %d lit pixels\x1b[K", niters, nnormals); | |
fflush(stdout); | |
// rotate sines, cosines, and products thereof | |
// this animates the torus rotation about two axes | |
R(5, cA, sA); | |
R(5, cAsB, sAsB); | |
R(5, cAcB, sAcB); | |
R(6, cB, sB); | |
R(6, cAcB, cAsB); | |
R(6, sAcB, sAsB); | |
usleep(15000); | |
printf("\r\x1b[23A"); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The circle algorithm is item 149 of HAKMEM (from 1972) I think, due to Minsky. (https://www.inwap.com/pdp10/hbaker/hakmem/hacks.html)