-
-
Save a2tm7a/5ba1743b43aaa105b7495471e58aecbc to your computer and use it in GitHub Desktop.
how to convert/port gensim word2vec to tensorflow projector board.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# required tensorflow 0.12 | |
# required gensim 0.13.3+ for new api model.wv.index2word or just use model.index2word | |
from gensim.models import Word2Vec | |
import tensorflow as tf | |
from tensorflow.contrib.tensorboard.plugins import projector | |
import numpy as np | |
# loading your gensim | |
model = Word2Vec.load("YOUR-MODEL") | |
# project part of vocab, 10K of 300 dimension | |
w2v_10K = np.zeros((10000,300)) | |
with open("./projector/prefix_metadata.tsv", 'w+') as file_metadata: | |
for i,word in enumerate(model.wv.index2word[:10000]): | |
w2v_10K[i] = model[word] | |
file_metadata.write(word.encode('utf-8') + '\n') | |
# define the model without training | |
sess = tf.InteractiveSession() | |
with tf.device("/cpu:0"): | |
embedding = tf.Variable(w2v_10K, trainable=False, name='prefix_embedding') | |
tf.global_variables_initializer().run() | |
saver = tf.train.Saver() | |
writer = tf.summary.FileWriter('./projector', sess.graph) | |
# adding into projector | |
config = projector.ProjectorConfig() | |
embed= config.embeddings.add() | |
embed.tensor_name = 'fs_embedding:0' | |
embed.metadata_path = './projector/prefix_metadata.tsv' | |
# Specify the width and height of a single thumbnail. | |
projector.visualize_embeddings(writer, config) | |
saver.save(sess, './projector/prefix_model.ckpt', global_step=10000) | |
# open tensorboard with logdir, check localhost:6006 for viewing your embedding. | |
# tensorboard --logdir="./projector/" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment