Last active
April 15, 2020 19:43
-
-
Save aaaddress1/d39e4b2610d52b80735cc39f8a2f8dcb to your computer and use it in GitHub Desktop.
cos_similarity.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# co-occurence matrix & cos-similarity, by [email protected] | |
testSample = 'adr have 30cm and shenghao have 30cm' | |
in_sample = testSample.split() | |
corups = set(in_sample) | |
co_matrix = { x: dict.fromkeys(corups, 0) for x in corups } | |
win_size = 1 | |
for indx, curr_token in enumerate(in_sample): | |
if indx - win_size >= 0: | |
for prev_token in in_sample[indx - win_size: indx]: | |
co_matrix[curr_token][prev_token] += 1 | |
if indx + win_size < len(in_sample): | |
for next_token in in_sample[indx + 1: indx + win_size + 1]: | |
co_matrix[curr_token][next_token] += 1 | |
def cos_similarity(token_a: str, token_b: str): | |
import math | |
L_a = math.sqrt(sum([ x**2 for x in co_matrix[token_a].values()])) + 1e-8 | |
L_b = math.sqrt(sum([ x**2 for x in co_matrix[token_b].values()])) + 1e-8 | |
dot_ab = float(sum([ co_matrix[token_a][token] * co_matrix[token_b][token] for token in corups])) | |
return dot_ab / (L_a * L_b) | |
print(cos_similarity('adr', 'shenghao')) # ans -> 0.7071 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment