Created
April 12, 2023 12:31
-
-
Save aabbas90/0ddaa58b7ad0cfcd40670566146d9c7c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Adapted from https://github.com/cyang-kth/maximum-coverage-location | |
import numpy as np | |
from gurobipy import * | |
from numpy import random | |
from scipy.spatial import distance_matrix | |
import argparse | |
def mclp(points, sites, demands, B, radius): | |
print('----- Configurations -----') | |
print(' Number of points %g' % points.shape[0]) | |
print(' Number of sites %g' % sites.shape[0]) | |
print(' B %g' % B) | |
print(' Radius %g' % radius) | |
import time | |
start = time.time() | |
I = sites.shape[0] | |
J = points.shape[0] | |
D = distance_matrix(points, sites) | |
mask1 = D<=radius | |
D[mask1]=1 | |
D[~mask1]=0 | |
m = Model() | |
y = {} | |
z = {} | |
for i in range(I): | |
y[i] = m.addVar(vtype=GRB.BINARY, name="y%d" % i) | |
for j in range(J): | |
z[j] = m.addVar(vtype=GRB.BINARY, name="x%d" % j) | |
m.update() | |
m.addConstr(quicksum(y[i] for i in range(I)) <= B) | |
for j in range(J): | |
m.addConstr(quicksum(y[i] for i in np.where(D[j]==1)[0]) >= z[j]) | |
m.setObjective(quicksum(z[j]*demands[j] for j in range(J)),GRB.MAXIMIZE) | |
m.setParam('OutputFlag', 1) | |
m.optimize() | |
end = time.time() | |
print('----- Output -----') | |
print(' Running time : %s seconds' % float(end-start)) | |
print(' Optimal coverage points: %g' % m.objVal) | |
solution = [] | |
if m.status == GRB.Status.OPTIMAL: | |
for v in m.getVars(): | |
# print v.varName,v.x | |
if v.x==1 and v.varName[0]=="z": | |
solution.append(int(v.varName[1:])) | |
opt_sites = sites[solution] | |
return opt_sites,m.objVal | |
parser = argparse.ArgumentParser(description='Solve MCLP instance by gurobi.') | |
parser.add_argument('file_path', type=str, help='Path to the file to be processed.') | |
args = parser.parse_args() | |
print(f'The file path is: {args.file_path}') | |
filepath = args.file_path | |
budget = 10 | |
coverage_radius = 5.5 | |
dformat = {'names': ('type', 'index', 'x', 'y', 'demand'), 'formats': ('S1', 'i4', 'f4', 'f4', 'i4')} | |
pt_type, pt_index, pt_x, pt_y, pt_demand = np.loadtxt(filepath, delimiter=None, skiprows = 1, dtype = dformat, unpack = True) | |
customer_mask = pt_type == b'C' | |
facility_mask = pt_type == b'F' | |
customer_pts = np.stack((pt_x[customer_mask], pt_y[customer_mask]), 1) | |
facility_pts = np.stack((pt_x[facility_mask], pt_y[facility_mask]), 1) | |
mclp(customer_pts, facility_pts, pt_demand, budget, coverage_radius) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment