Created
August 9, 2019 02:17
-
-
Save aakashns/2b696fe4b03f37a9d7f57cfd06cb7e5b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# Copyright (c) 2017-present, Facebook, Inc. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the LICENSE file in | |
# the root directory of this source tree. An additional grant of patent rights | |
# can be found in the PATENTS file in the same directory. | |
""" | |
Run inference for pre-processed data with a trained model. | |
""" | |
import logging | |
import os | |
import random | |
import string | |
import sys | |
import sentencepiece as spm | |
import torch | |
import torchaudio | |
import numpy as np | |
from fairseq import options, progress_bar, utils, tasks | |
from fairseq.meters import StopwatchMeter, TimeMeter | |
from fairseq.utils import import_user_module | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
def add_asr_eval_argument(parser): | |
parser.add_argument("--ctc", action="store_true", help="decode a ctc model") | |
parser.add_argument("--rnnt", default=False, help="decode a rnnt model") | |
parser.add_argument("--kspmodel", default=None, help="sentence piece model") | |
parser.add_argument( | |
"--wfstlm", default=None, help="wfstlm on dictonary output units" | |
) | |
parser.add_argument( | |
"--rnnt_decoding_type", | |
default="greedy", | |
help="wfstlm on dictonary\ | |
output units", | |
) | |
parser.add_argument( | |
"--lm_weight", | |
default=0.2, | |
help="weight for wfstlm while interpolating\ | |
with neural score", | |
) | |
parser.add_argument( | |
"--rnnt_len_penalty", default=-0.5, help="rnnt length penalty on word level" | |
) | |
return parser | |
def check_args(args): | |
assert args.path is not None, "--path required for generation!" | |
assert ( | |
not args.sampling or args.nbest == args.beam | |
), "--sampling requires --nbest to be equal to --beam" | |
assert ( | |
args.replace_unk is None or args.raw_text | |
), "--replace-unk requires a raw text dataset (--raw-text)" | |
def process_predictions(args, hypos, sp, tgt_dict): | |
res = [] | |
for hypo in hypos[: min(len(hypos), args.nbest)]: | |
hyp_pieces = tgt_dict.string(hypo["tokens"].int().cpu()) | |
hyp_words = sp.DecodePieces(hyp_pieces.split()) | |
res.append(hyp_words) | |
return res | |
def optimize_models(args, use_cuda, models): | |
"""Optimize ensemble for generation | |
""" | |
for model in models: | |
model.make_generation_fast_( | |
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, | |
need_attn=args.print_alignment, | |
) | |
if args.fp16: | |
model.half() | |
if use_cuda: | |
model.cuda() | |
def calc_mean_invstddev(feature): | |
if len(feature.shape) != 2: | |
raise ValueError("We expect the input feature to be 2-D tensor") | |
mean = np.mean(feature, axis=0) | |
var = np.var(feature, axis=0) | |
# avoid division by ~zero | |
if var.any() < sys.float_info.epsilon: | |
return mean, 1.0 / (np.sqrt(var) + sys.float_info.epsilon) | |
return mean, 1.0 / np.sqrt(var) | |
def calcMN(features): | |
mean, invstddev = calc_mean_invstddev(features) | |
res = (features - mean) * invstddev | |
return res | |
import matplotlib.pyplot as plt | |
def transcribe(waveform, args, task, generator, models, sp, tgt_dict): | |
r""" | |
CUDA_VISIBLE_DEVICES=0 python infer_asr.py /Users/jamarshon/Documents/downloads/ \ | |
--task speech_recognition --max-tokens 10000000 --nbest 1 --path \ | |
/Users/jamarshon/Downloads/checkpoint_avg_60_80.pt --beam 20 | |
""" | |
num_features = 80 | |
output = torchaudio.compliance.kaldi.fbank(waveform, num_mel_bins=num_features) | |
output_cmvn = calcMN(output.cpu().detach().numpy()) | |
# size (m, n) | |
source = torch.tensor(output_cmvn) | |
frames_lengths = torch.LongTensor([source.size(0)]) | |
# size (1, m, n). In general, if source is (x, m, n), then hypos is (x, ...) | |
source.unsqueeze_(0) | |
sample = {'net_input': {'src_tokens': source, 'src_lengths': frames_lengths}} | |
hypos = task.inference_step(generator, models, sample) | |
assert len(hypos) == 1 | |
transcription = [] | |
print(hypos) | |
for i in range(len(hypos)): | |
# Process top predictions | |
hyp_words = process_predictions(args, hypos[i], sp, tgt_dict) | |
transcription.append(hyp_words) | |
print('transcription:', transcription) | |
return transcription | |
def main(args): | |
check_args(args) | |
import_user_module(args) | |
if args.max_tokens is None and args.max_sentences is None: | |
args.max_tokens = 30000 | |
logger.info(args) | |
use_cuda = torch.cuda.is_available() and not args.cpu | |
# Load dataset splits | |
task = tasks.setup_task(args) | |
# Set dictionary | |
tgt_dict = task.target_dictionary | |
if args.ctc or args.rnnt: | |
tgt_dict.add_symbol("<ctc_blank>") | |
if args.ctc: | |
logger.info("| decoding a ctc model") | |
if args.rnnt: | |
logger.info("| decoding a rnnt model") | |
# Load ensemble | |
logger.info("| loading model(s) from {}".format(args.path)) | |
models, _model_args = utils.load_ensemble_for_inference( | |
args.path.split(":"), | |
task, | |
model_arg_overrides=eval(args.model_overrides), # noqa | |
) | |
optimize_models(args, use_cuda, models) | |
# Initialize generator | |
generator = task.build_generator(args) | |
sp = spm.SentencePieceProcessor() | |
sp.Load(os.path.join(args.data, 'spm.model')) | |
# TODO: replace this | |
# path = '/Users/jamarshon/Downloads/snippet.mp3' | |
path = '/Users/jamarshon/Downloads/hamlet.mp3' | |
if not os.path.exists(path): | |
raise FileNotFoundError("Audio file not found: {}".format(path)) | |
waveform, sample_rate = torchaudio.load_wav(path) | |
waveform = waveform.mean(0, True) | |
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate,new_freq=16000)(waveform) | |
# waveform = waveform[:, :16000*30] | |
# torchaudio.save('/Users/jamarshon/Downloads/hello.wav', waveform >> 16, 16000) | |
import time | |
print(sample_rate, waveform.shape) | |
start = time.time() | |
transcribe(waveform, args, task, generator, models, sp, tgt_dict) | |
end = time.time() | |
print(end - start) | |
def cli_main(): | |
parser = options.get_generation_parser() | |
parser = add_asr_eval_argument(parser) | |
#args = fairspeq_options.parse_args_and_arch(parser) | |
args = options.parse_args_and_arch(parser) | |
main(args) | |
if __name__ == "__main__": | |
cli_main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment