Last active
July 15, 2018 16:00
-
-
Save aakashns/a07f9c457c48f6af06f9e9245b1def9b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch.nn as nn | |
import torch.nn.functional as F | |
def conv_2d(ni, nf, stride=1, ks=3): | |
return nn.Conv2d(in_channels=ni, out_channels=nf, | |
kernel_size=ks, stride=stride, | |
padding=ks//2, bias=False) | |
def bn_relu_conv(ni, nf): | |
return nn.Sequential(nn.BatchNorm2d(ni), | |
nn.ReLU(inplace=True), | |
conv_2d(ni, nf)) | |
class BasicBlock(nn.Module): | |
def __init__(self, ni, nf, stride=1): | |
super().__init__() | |
self.bn = nn.BatchNorm2d(ni) | |
self.conv1 = conv_2d(ni, nf, stride) | |
self.conv2 = bn_relu_conv(nf, nf) | |
self.shortcut = lambda x: x | |
if ni != nf: | |
self.shortcut = conv_2d(ni, nf, stride, 1) | |
def forward(self, x): | |
x = F.relu(self.bn(x), inplace=True) | |
r = self.shortcut(x) | |
x = self.conv1(x) | |
x = self.conv2(x) * 0.2 | |
return x.add_(r) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment