Created
April 26, 2019 14:56
-
-
Save aallan/064337cf38349c9f1cb8fae23497d6bd to your computer and use it in GitHub Desktop.
Benchmarking script for TensorFlow inferencing on Raspberry Pi, Darwin, and NVIDIA Jetson Nano
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import platform | |
PLATFORM = platform.system().lower() | |
GOOGLE = 'edge_tpu' | |
INTEL = 'ncs2' | |
NVIDIA = 'jetson_nano' | |
PI = 'raspberry_pi' | |
MAC = 'darwin' | |
IS_LINUX = (PLATFORM == 'linux') | |
if IS_LINUX: | |
PLATFORM = platform.linux_distribution()[0].lower() | |
if PLATFORM == 'debian': | |
try: | |
with open('/proc/cpuinfo') as f: | |
for line in f: | |
line = line.strip() | |
if line.startswith('Hardware') and ( line.endswith('BCM2708') or line.endswith('BCM2835')): | |
PLATFORM = PI | |
print("Running on a Raspberry Pi.") | |
break | |
except: | |
print("Unknown platform based on Debian.") | |
pass | |
elif PLATFORM == 'mendel': | |
PLATFORM = GOOGLE | |
print("Running on a Coral Dev Board.") | |
try: | |
from edgetpu.detection.engine import DetectionEngine | |
print("DetectionEngine present.") | |
except ImportError: | |
try: | |
from openvino.inference_engine import IENetwork, IEPlugin | |
print("OpenVINO present.") | |
print("Assuming Movidius hardware.") | |
PLATFORM = INTEL | |
except ImportError: | |
try: | |
import tensorflow as tf | |
if (tf.test.is_built_with_cuda()): | |
import tensorflow.contrib.tensorrt | |
print("TensorFlow with GPU support present.") | |
print("Assuming Jetson Nano.") | |
PLATFORM = NVIDIA | |
else: | |
print("No GPU support in TensorFlow.") | |
except ImportError: | |
print("No TensorFlow support found.") | |
LEGAL_PLATFORMS = NVIDIA, PI, MAC | |
assert PLATFORM in LEGAL_PLATFORMS, "Don't understand platform %s." % PLATFORM | |
import sys | |
import os | |
import logging as log | |
import argparse | |
import subprocess | |
from timeit import default_timer as timer | |
import cv2 | |
from PIL import Image | |
from PIL import ImageFont, ImageDraw | |
# Function to draw a rectangle with width > 1 | |
def draw_rectangle(draw, coordinates, color, width=1): | |
for i in range(width): | |
rect_start = (coordinates[0] - i, coordinates[1] - i) | |
rect_end = (coordinates[2] + i, coordinates[3] + i) | |
draw.rectangle((rect_start, rect_end), outline = color, fill = color) | |
# Function to read labels from text files. | |
def ReadLabelFile(file_path): | |
with open(file_path, 'r') as f: | |
lines = f.readlines() | |
ret = {} | |
for line in lines: | |
pair = line.strip().split(maxsplit=1) | |
ret[int(pair[0])] = pair[1].strip() | |
return ret | |
def inference_tf(runs, image, model, output, label=None): | |
if label: | |
labels = ReadLabelFile(label) | |
else: | |
labels = None | |
tf_config = tf.ConfigProto() | |
tf_config.gpu_options.allow_growth = True | |
with tf.gfile.FastGFile(model, 'rb') as f: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(f.read()) | |
with tf.Session(config=tf_config) as sess: | |
sess.graph.as_default() | |
tf.import_graph_def(graph_def, name='') | |
img = Image.open(image) | |
draw = ImageDraw.Draw(img, 'RGBA') | |
helvetica=ImageFont.truetype("./Helvetica.ttf", size=72) | |
picture = cv2.imread(image) | |
initial_h, initial_w, channels = picture.shape | |
frame = cv2.resize(picture, (300, 300)) | |
frame = frame[:, :, [2, 1, 0]] # BGR2RGB | |
frame = frame.reshape(1, frame.shape[0], frame.shape[1], 3) | |
# Start synchronous inference and get inference result | |
# Run inference. | |
print("Running inferencing for ", runs, " times.") | |
if runs == 1: | |
start = timer() | |
out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'), | |
sess.graph.get_tensor_by_name('detection_scores:0'), | |
sess.graph.get_tensor_by_name('detection_boxes:0'), | |
sess.graph.get_tensor_by_name('detection_classes:0')], | |
feed_dict={'image_tensor:0': frame}) | |
end = timer() | |
print('Elapsed time is ', ((end - start)/runs)*1000, 'ms' ) | |
else: | |
start = timer() | |
print('Initial run, discarding.') | |
out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'), | |
sess.graph.get_tensor_by_name('detection_scores:0'), | |
sess.graph.get_tensor_by_name('detection_boxes:0'), | |
sess.graph.get_tensor_by_name('detection_classes:0')], | |
feed_dict={'image_tensor:0': frame}) | |
end = timer() | |
print('First run time is ', (end - start)*1000, 'ms') | |
start = timer() | |
for i in range(runs): | |
out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'), | |
sess.graph.get_tensor_by_name('detection_scores:0'), | |
sess.graph.get_tensor_by_name('detection_boxes:0'), | |
sess.graph.get_tensor_by_name('detection_classes:0')], | |
feed_dict={'image_tensor:0': frame}) | |
end = timer() | |
print('Elapsed time is ', ((end - start)/runs)*1000, 'ms' ) | |
# Visualize detected bounding boxes. | |
num_detections = int(out[0][0]) | |
for i in range(num_detections): | |
classId = int(out[3][0][i]) | |
score = float(out[1][0][i]) | |
bbox = [float(v) for v in out[2][0][i]] | |
if score > 0.5: | |
xmin = bbox[1] * initial_w | |
ymin = bbox[0] * initial_h | |
xmax = bbox[3] * initial_w | |
ymax = bbox[2] * initial_h | |
if labels: | |
print(labels[classId], 'score = ', score) | |
else: | |
print ('score = ', score) | |
box = [xmin, ymin, xmax, ymax] | |
print( 'box = ', box ) | |
draw_rectangle(draw, box, (0,128,128,20), width=5) | |
if labels: | |
draw.text((box[0] + 20, box[1] + 20), labels[classId], fill=(255,255,255,20), font=helvetica) | |
img.save(output) | |
print ('Saved to ', output) | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model', help='Path of the detection model.', required=True) | |
parser.add_argument('--label', help='Path of the labels file.') | |
parser.add_argument('--input', help='File path of the input image.', required=True) | |
parser.add_argument('--output', help='File path of the output image.') | |
parser.add_argument('--runs', help='Number of times to run the inference', type=int, default=1) | |
args = parser.parse_args() | |
if ( args.output): | |
output_file = args.output | |
else: | |
output_file = 'out.jpg' | |
if ( args.label ): | |
label_file = args.label | |
else: | |
label_file = None | |
result = inference_tf( args.runs, args.input, args.model, output_file, label_file) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi @aallan, I'd like to make use of & adapt this gist for a (commercial) research project I'm working on but don't see a license anywhere.
Please could you clarify whether this is something you permit (and perhaps include a license in this file to clarify for future readers)?
Thanks, Josh