Last active
August 28, 2020 08:18
-
-
Save aallan/6778b5a046aef3a76966e335ca186b7f to your computer and use it in GitHub Desktop.
Benchmarking script for TensorFlow Lite on EdgeTPU-based hardware
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import platform | |
PLATFORM = platform.system().lower() | |
GOOGLE = 'edge_tpu' | |
INTEL = 'ncs2' | |
NVIDIA = 'jetson_nano' | |
PI = 'raspberry_pi' | |
IS_LINUX = (PLATFORM == 'linux') | |
if IS_LINUX: | |
PLATFORM = platform.linux_distribution()[0].lower() | |
if PLATFORM == 'debian': | |
try: | |
with open('/proc/cpuinfo') as f: | |
for line in f: | |
line = line.strip() | |
if line.startswith('Hardware') and ( line.endswith('BCM2708') or line.endswith('BCM2835')): | |
PLATFORM = PI | |
print("Running on a Raspberry Pi.") | |
break | |
except: | |
print("Unknown platform based on Debian.") | |
pass | |
elif PLATFORM == 'mendel': | |
PLATFORM = GOOGLE | |
print("Running on a Coral Dev Board.") | |
try: | |
from edgetpu.detection.engine import DetectionEngine | |
print("DetectionEngine present.") | |
PLATFORM = GOOGLE | |
except ImportError: | |
try: | |
from openvino.inference_engine import IENetwork, IEPlugin | |
print("OpenVINO present.") | |
print("Assuming Movidius hardware.") | |
PLATFORM = INTEL | |
except ImportError: | |
try: | |
import tensorflow as tf | |
if (tf.test.is_built_with_cuda()): | |
print("TensorFlow with GPU support present.") | |
print("Assuming Jetson Nano.") | |
PLATFORM = NVIDIA | |
else: | |
print("No GPU support in TensorFlow.") | |
except ImportError: | |
print("No TensorFlow support found.") | |
LEGAL_PLATFORMS = GOOGLE | |
assert PLATFORM in LEGAL_PLATFORMS, "This version of the script is intended for Edge TPU hardware." | |
import argparse | |
from timeit import default_timer as timer | |
from PIL import Image | |
from PIL import ImageFont, ImageDraw, ImageColor | |
# Function to draw a rectangle with width > 1 | |
def draw_rectangle(draw, coordinates, color, width=1): | |
for i in range(width): | |
rect_start = (coordinates[0] - i, coordinates[1] - i) | |
rect_end = (coordinates[2] + i, coordinates[3] + i) | |
draw.rectangle((rect_start, rect_end), outline = color, fill = color) | |
# Function to read labels from text files. | |
def ReadLabelFile(file_path): | |
with open(file_path, 'r') as f: | |
lines = f.readlines() | |
ret = {} | |
for line in lines: | |
pair = line.strip().split(maxsplit=1) | |
ret[int(pair[0])] = pair[1].strip() | |
return ret | |
def inference_edgetpu(runs, image, model, output, label=None): | |
# Initialize engine. | |
engine = DetectionEngine(model) | |
if label: | |
labels = ReadLabelFile(label) | |
else: | |
labels = None | |
# Open image. | |
img = Image.open(image) | |
draw = ImageDraw.Draw(img, 'RGBA') | |
helvetica=ImageFont.truetype("./Helvetica.ttf", size=72) | |
initial_h, initial_w = img.size | |
frame = img.resize((300, 300)) | |
# Run inference. | |
print("Running inferencing for ", runs, " times.") | |
if runs == 1: | |
start = timer() | |
ans = engine.DetectWithImage(frame, threshold=0.05, relative_coord=False, top_k=10) | |
end = timer() | |
print('Elapsed time is ', ((end - start)/runs)*1000, 'ms' ) | |
else: | |
start = timer() | |
print('Initial run, discarding.') | |
ans = engine.DetectWithImage(frame, threshold=0.05, relative_coord=False, top_k=10) | |
end = timer() | |
print('First run time is ', (end - start)*1000, 'ms') | |
start = timer() | |
for i in range(runs): | |
ans = engine.DetectWithImage(frame, threshold=0.05, relative_coord=False, top_k=10) | |
end = timer() | |
print('Elapsed time is ', ((end - start)/runs)*1000, 'ms' ) | |
# Display result | |
if ans: | |
print("Processing output") | |
for obj in ans: | |
if obj.score > 0.5: | |
if labels: | |
print(labels[obj.label_id], 'score = ', obj.score) | |
else: | |
print ('score = ', obj.score) | |
box = obj.bounding_box.flatten().tolist() | |
bbox = [0]*4 | |
bbox[0] = box[0]*(initial_h/300) | |
bbox[1] = box[1]*(initial_w/300) | |
bbox[2] = box[2]*(initial_h/300) | |
bbox[3] = box[3]*(initial_w/300) | |
print( 'box = ', box ) | |
draw_rectangle(draw, bbox, (0,128,128,20), width=5) | |
if labels: | |
draw.text((bbox[0] + 20, bbox[1] + 20), labels[obj.label_id], fill=(255,255,255,20), font=helvetica) | |
img.save(output) | |
print ('Saved to ', output) | |
else: | |
print ('No object detected!') | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model', help='Path of the detection model.', required=True) | |
parser.add_argument('--label', help='Path of the labels file.') | |
parser.add_argument('--input', help='File path of the input image.', required=True) | |
parser.add_argument('--output', help='File path of the output image.') | |
parser.add_argument('--runs', help='Number of times to run the inference', type=int, default=1) | |
args = parser.parse_args() | |
if ( args.output): | |
output_file = args.output | |
else: | |
output_file = 'out.jpg' | |
if ( args.label ): | |
label_file = args.label | |
else: | |
label_file = None | |
result = inference_edgetpu( args.runs, args.input, args.model, output_file, label_file) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi. Could you explain how to run this code on the Coral Dev Kit? I have this code the input picture and the labels file in a folder on the dev kit. in the console i typed: python3 ./benchmark_edgetpu.py --model tflite_graph_1556320556_edgetpu.tflite --label coco_labels_for_edgetpu.txt --input fruit.jpg --output out.jpg --runs 1000
I would really appreciate, if you could help me