Last active
March 10, 2021 15:34
-
-
Save aammd/cc38f676d7b40582daa3604d3f6272a2 to your computer and use it in GitHub Desktop.
Minimal shiny app to simulate priors on a logit scale
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(shiny) | |
library(bslib) | |
library(thematic) | |
library(ggplot2) | |
thematic::thematic_shiny(font = "auto") | |
# take a vector, make a histogram | |
ggvec2hist <- function(vec){ | |
ggplot(data.frame(x = vec), aes(x = x)) + geom_histogram(bins = 42) | |
} | |
#' modal_interactive UI Function | |
#' | |
#' @description A shiny Module. | |
#' | |
#' @param id,input,output,session Internal parameters for {shiny}. | |
#' | |
#' @noRd | |
#' | |
#' @importFrom shiny NS tagList | |
mod_modal_interactive_ui <- function(id){ | |
ns <- NS(id) | |
navbarPage( | |
theme = bslib::bs_theme( | |
bg = "#006d2c", fg = "#edf8e9", primary = "white", | |
base_font = font_google("Bree Serif") | |
), | |
tags$h1("Prior predictions on the logit scale"), | |
withMathJax(), | |
helpText( | |
"What does a given prior mean? One great way to interpret a prior is via simulation. | |
To do this, first simulate values from the prior, then use those values to simulate observations. Here you can explore the effect of the prior on the intercept of a simple logistic regression." | |
), | |
helpText('$$ | |
\\begin{align} | |
Y & \\sim \\text{Binomial}(20, p) \\\\ | |
\\text{logit}(p) &= \\alpha \\\\ | |
\\alpha & \\sim \\text{Normal}(0, 5) \\\\ | |
\\end{align} | |
$$'), | |
fluidRow( | |
column(2, | |
numericInput(ns("num"), "sample size", min = 1, max = 500, | |
step = 1, value = 300), | |
numericInput(ns("mean"), "Prior mean", value = 0), | |
numericInput(ns("sd"), "Prior standard dev", value = 10), | |
actionButton(ns("simulate"), "Simulate!") | |
), | |
column(10, | |
plotOutput(ns("prior_logit"), height = 300), | |
plotOutput(ns("prior_prob"), height = 300), | |
plotOutput(ns("prior_predict"), height = 300) | |
) | |
) | |
) | |
} | |
#' modal_interactive Server Functions | |
#' | |
#' @noRd | |
mod_modal_interactive_server <- function(id){ | |
moduleServer( id, function(input, output, session){ | |
ns <- session$ns | |
prior_sim <- eventReactive(input$simulate, | |
{rnorm(mean = input$mean, | |
sd = input$sd, | |
n = input$num)}) | |
output$prior_logit <- renderPlot({ | |
ggvec2hist(prior_sim()) + | |
labs(title = "Prior on logit scale") + | |
coord_cartesian(xlim = c(-10,10)) | |
}) | |
output$prior_prob <- renderPlot({ | |
ggvec2hist(plogis(prior_sim())) + | |
labs(title = "Prior on probability scale") + | |
coord_cartesian(xlim = c(0,1)) | |
}) | |
prior_pred_sim <- reactive({ | |
rbinom(n = length(prior_sim()), | |
size = 20, | |
prob = plogis(prior_sim()))}) | |
output$prior_predict <- renderPlot({ | |
ggvec2hist(prior_pred_sim()) + | |
labs(title = "Prior predictions") + | |
coord_cartesian(xlim = c(0,20)) | |
}) | |
}) | |
} | |
logit_prior <- function(){ | |
ui <- fluidPage( | |
mod_modal_interactive_ui("norm") | |
) | |
server <- function(input, output, session) { | |
mod_modal_interactive_server("norm") | |
} | |
shinyApp(ui, server) | |
} | |
logit_prior() | |
## To be copied in the UI | |
# mod_modal_interactive_ui("modal_interactive_ui_1") | |
## To be copied in the server | |
# mod_modal_interactive_server("modal_interactive_ui_1") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment