Skip to content

Instantly share code, notes, and snippets.

@aaronberdanier
Created October 10, 2012 16:55
Show Gist options
  • Save aaronberdanier/3866877 to your computer and use it in GitHub Desktop.
Save aaronberdanier/3866877 to your computer and use it in GitHub Desktop.
Code for calculating annual water balance with data from NCDC
# Calculating water balance based on algorithms in Willmott, Rowe, and Mintz (1985) J. Clim. 5:589-606
# Aaron Berdanier and Matt Kwit (2012)
# Questions or comments to: [email protected]
# Packages:
library(reshape)
# Load the function:
waterbalance <- function(rawdat,nh,wstar){
redat <- rawdat[rawdat$STATION_NAME==stations[choice],]
yearmo <- cbind(as.numeric(substr(redat$DATE,1,4)),as.numeric(substr(redat$DATE,5,6)))
redat <- redat[yearmo[,1]%in%min(yearmo[yearmo[,2]==1,1]):max(yearmo[yearmo[,2]==12,1]),]
yearmo <- yearmo[yearmo[,1]%in%min(yearmo[yearmo[,2]==1,1]):max(yearmo[yearmo[,2]==12,1]),]
meltd <- cbind(yearmo,redat[,4:5])
colnames(meltd) <- c("Year","Mo","P","T")
T <- as.matrix(cast(meltd,Mo~Year,function(x) mean(x)/10,value="T"))
P <- as.matrix(cast(meltd,Mo~Year,function(x) mean(x)/10,value="P"))
T[is.nan(T)] <- NA
P[is.nan(P)] <- NA
# T <- as.matrix(T)
# P <- as.matrix(P)
# Missing values are given the long-term average
# could be changed for missing values to interpolate surrounding values too... might be better
for(r in 1:12) T[r,is.na(T[r,])] <- round(mean(T[r,!is.na(T[r,])]),2)
# Missing values assigned zero
P[is.na(P)] <- 0
ny <- ncol(P) # number of observation years
Eo <- Eox <- Ea <- w15 <- M15 <- matrix(NA,12,ny)
nd <- matrix(rep(c(31,28,31,30,31,30,31,31,30,31,30,31),ny),12,ny,byrow=F) # number of days in each month, year
leapyears <- c(1900,1904,1908,1912,1916,1920,1924,1928,1932,1936,1940,1944,1948,1952,1956,1960,1964,1968,1972,1976,1980,1984,1988,1992,1996,2000,2004,2008,2012)
nd[2,which(as.numeric(colnames(T))%in%leapyears)] <- 29
w0 <- ws0 <- 0 # set initial water storage to zero
for(y in 1:ny){
I <- sum(!is.nan((T[,y]/5)^1.514))
a <- 6.75E-7*I^3 - 7.71E-5*I^2 + 1.79E-2*I + 0.49
for (m in 1:12){
# Potential evapotranspiration
if(T[m,y] < 0){
Eox[m,y] <- 0
}else{
if(T[m,y] < 26.5){
Eox[m,y] <- 16*(10*T[m,y]/I)^a
}else{
Eox[m,y] <- -415.85 + 32.24*T[m,y] - 0.43*T[m,y]^2
}
}
Eo[m,y] <- Eox[m,y]*((nd[m,y]/30)*(nh[m]/12))
D <- B <- S <- M <- numeric(nd[m,y])
Pd <- P[m,y]/nd[m,y]
Ps <- Pr <- 0
w <- ws <- numeric(nd[m,y]+1)
w[1] <- w0
ws[1] <- ws0
for (d in 1:nd[m,y]){
if(T[m,y] < -1){
Ps <- Pd
}else{
Pr <- Pd
}
# Snowmelt per day
M[d] <- 2.63 + 2.55*T[m,y] + 0.0912*T[m,y]*Pr
if(M[d] < 0) M[d] = 0 # snowmelt cannot be negative
if(M[d] > ws[d] + Ps) M[d] = ws[d] + Ps # snowmelt cannot be greater than available water
ws[d+1] <- ws[d] + Ps - M[d] # SWE for next day
# Demand per day
D[d] <- M[d] + Pd - Eo[m,y]/30
if(D[d] < 0){ # evaporative demand
B[d] <- 1-exp(-6.68*w[d]/wstar)
}else{ # recharge
B[d] <- 1
}
# soil water at the end of the day
w[d+1] <- w[d] + B[d]*D[d]
if(w[d+1] > wstar){ # surplus!
S[d] <- w[d+1] - wstar
w[d+1] <- wstar
}
}
# Change in soil water over the month
dw <- tail(w,n=1) - w[1]
w15[m,y] <- w[16] # soil moisture on the 15th of the month
M15[m,y] <- M[15]
Ea[m,y] <- P[m,y] + sum(M) - dw - sum(S)
w0 <- tail(w,n=1) # assign new w0
ws0 <- tail(ws,n=1)
}
}
Eo <<- Eo
Ea <<- Ea
P <<- P
}
# Steps:
# 1. Download data from http://www.ncdc.noaa.gov/cdo-web/#t=secondTabLink
# - Choose "Monthly Summaries GHCND"
# - Identify stations and download temperature and precipitation data
# 2. Load csv...
rawdat <- read.csv(file.choose())
head(rawdat)
rawdat[rawdat==9999] <- NA
stations <- unique(rawdat$STATION_NAME)
print("Choose a station...");matrix(stations)
# 3. Choose a station.
choice <- 3
# 4. Need number of daylight hours on the 15th of each month at the site
# http://aa.usno.navy.mil/data/docs/Dur_OneYear.php
nh <-
# Fort Collins, CO
c(9.6,10.66666667,11.95,13.31666667,14.46666667,15.06666667,14.78333333,13.76666667,12.45,11.11666667,9.916666667,9.283333333)
# Manhattan, KS
# c(9.716666667,10.73333333,11.95,13.25,14.35,14.91666667,14.65,13.68333333,12.43333333,11.16666667,10.01666667,9.433333333)
# Minot ND
# c(8.783333333,10.23333333,11.9,13.7,15.23333333,16.06666667,15.66666667,14.3,12.56666667,10.83333333,9.216666667,8.366666667)
# 5. Need soil water storage capacity, mm
wstar <- 300
waterbalance(rawdat,nh,wstar)
PET <- apply(Eo,1,quantile,c(0.1,0.5,0.9))
AET <- apply(Ea,1,quantile,c(0.1,0.5,0.9))
PPT <- apply(P,1,quantile,c(0.1,0.5,0.9),na.rm=TRUE)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment