Created
April 1, 2016 22:42
-
-
Save aaronpolhamus/034cfe4dd8e2cc26ccb24ad6616bf7b4 to your computer and use it in GitHub Desktop.
Adaptation of VGG net for Keras, with 128x128 greyscale images and 196 target classes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import sys | |
import json | |
import model_control | |
from keras.models import Sequential | |
from keras.layers import Dense, Dropout, Activation, Flatten | |
from keras.layers import Convolution2D, MaxPooling2D | |
from keras.optimizers import SGD | |
import numpy as np | |
from numpy import loadtxt, asarray | |
from scipy.ndimage import imread | |
Y_train = loadtxt(model_control.y_train_file, delimiter=',', dtype = int) | |
train_files = os.listdir(model_control.train_img_path) | |
train_files = ['%s/%s' % (model_control.train_img_path, x) for x in train_files if 'jpg' in x] | |
X_train = asarray([imread(x) for x in train_files]) | |
X_train = X_train.reshape(X_train.shape[0], 1, 128, 128) | |
model = Sequential() | |
model.add(Convolution2D(64, 3, 3, border_mode='valid', input_shape=(1, 128, 128))) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(64, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D((2,2), strides=(2,2))) | |
model.add(Dropout(0.25)) | |
model.add(Convolution2D(128, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(128, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D((2,2), strides=(2,2))) | |
model.add(Dropout(0.25)) | |
model.add(Convolution2D(256, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(256, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(256, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D((2,2), strides=(2,2))) | |
model.add(Dropout(0.25)) | |
model.add(Convolution2D(512, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(512, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(512, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D((2,2), strides=(2,2))) | |
model.add(Dropout(0.25)) | |
model.add(Flatten()) | |
model.add(Dense(2000)) | |
model.add(Activation('relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(2000)) | |
model.add(Activation('relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(196, activation='softmax')) | |
sgd = SGD(lr=model_control.l_rate, decay=0, momentum=0.9, nesterov=True) | |
model.compile(loss='categorical_crossentropy', optimizer=sgd) | |
history = model.fit(X_train, Y_train, batch_size=model_control.batch_size, nb_epoch=model_control.nb_epoch, verbose=1) | |
model.save_weights('vgg_net_weights.h5') | |
json_string = model.to_json() | |
with open('vgg_net_structure.json', 'wb') as outfile: | |
json.dump(json_string, outfile) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment