Created
October 6, 2018 05:02
-
-
Save aaronsnoswell/fecf25f26bb95e6d090c783cfeb37635 to your computer and use it in GitHub Desktop.
A hello world example for PyTorch implementing a ConvNet for MNIST
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""A basic PyTorch ConvNet implementation on the MNIST dataset | |
From http://adventuresinmachinelearning.com/convolutional-neural-networks-tutorial-in-pytorch/ | |
""" | |
import os | |
from torch.utils.data import DataLoader | |
import torchvision.transforms as transforms | |
import torchvision.datasets | |
import torch | |
import torch.nn as nn | |
# One epoch is a presentation of all training data to the network | |
num_epochs = 5 | |
# MNIST has 10 output classes | |
num_classes = 10 | |
# One batch is averaged to compute a loss gradient | |
batch_size = 100 | |
# Learning rate | |
learning_rate = 0.001 | |
DATA_PATH = "." | |
MODEL_STORE_PATH = "." | |
# transforms to apply to the data | |
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) | |
# MNIST dataset | |
train_dataset = torchvision.datasets.MNIST(root=DATA_PATH, train=True, transform=trans, download=True) | |
test_dataset = torchvision.datasets.MNIST(root=DATA_PATH, train=False, transform=trans) | |
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) | |
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) | |
class MyConvNet(nn.Module): | |
def __init__(self): | |
"""Constructor""" | |
super(MyConvNet, self).__init__() | |
self.layer1 = nn.Sequential( | |
nn.Conv2d(1, 32, kernel_size=5, stride=1, padding=2), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2, stride=2) | |
) | |
self.layer2 = nn.Sequential( | |
nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2, stride=2) | |
) | |
self.drop_out = nn.Dropout() | |
self.fc1 = nn.Linear(7 * 7 * 64, 1000) | |
self.fc2 = nn.Linear(1000, 10) | |
def forward(self, x): | |
"""Forward data flow""" | |
out = self.layer1(x) | |
out = self.layer2(out) | |
out = out.reshape(out.size(0), -1) | |
out = self.drop_out(out) | |
out = self.fc1(out) | |
out = self.fc2(out) | |
return out | |
model = MyConvNet() | |
# Loss function | |
criterion = nn.CrossEntropyLoss() | |
# Optimizer | |
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) | |
# Train the model | |
print("Training...") | |
total_step = len(train_loader) | |
loss_list = [] | |
acc_list = [] | |
for epoch in range(num_epochs): | |
# Present all training data | |
for i, (images, labels) in enumerate(train_loader): | |
# Run forward pass | |
outputs = model(images) | |
loss = criterion(outputs, labels) | |
loss_list.append(loss.item()) | |
# Back-propogate and perform Adam optimisation | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
# Track the accuracy | |
total = labels.size(0) | |
_, predicted = torch.max(outputs.data, 1) | |
correct = (predicted == labels).sum().item() | |
acc_list.append(correct / total) | |
if (i + 1) % 100 == 0: | |
print( | |
"Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Accuracy: {:.2f}%"\ | |
.format( | |
epoch + 1, | |
num_epochs, i + 1, | |
total_step, | |
loss.item(), | |
(correct / total) * 100 | |
) | |
) | |
# Test the model | |
model.eval() | |
with torch.no_grad(): | |
correct = 0 | |
total = 0 | |
for images, labels in test_loader: | |
outputs = model(images) | |
_, predicted = torch.max(outputs.data, 1) | |
total += labels.size(0) | |
correct += (predicted == labels).sum().item() | |
print("Test accuracy of the model on the 10000 test images: {}%".format( | |
correct / total * 100 | |
)) | |
# Save the model | |
torch.save( | |
model.state_dict(), | |
os.path.join(MODEL_STORE_PATH, "my_conv_net_model.ckpt") | |
) | |
# Plot the results | |
from bokeh.plotting import figure | |
from bokeh.io import show | |
from bokeh.models import LinearAxis, Range1d | |
import numpy as np | |
p = figure( | |
y_axis_label="Loss", | |
width=850, | |
y_range=(0, 1), | |
title="PyTorch ConvNet results" | |
) | |
p.extra_y_ranges = { | |
"Accuracy": Range1d(start=0, end=100) | |
} | |
p.add_layout( | |
LinearAxis(y_range_name="Accuracy", axis_label="Accuracy (%)"), | |
"right" | |
) | |
p.line(np.arange(len(loss_list)), loss_list) | |
p.line( | |
np.arange(len(loss_list)), | |
np.array(acc_list) * 100, | |
y_range_name="Accuracy", | |
color="red" | |
) | |
show(p) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment