-
-
Save aaronsteers/d5cbb912875f108ea624258b69f26f94 to your computer and use it in GitHub Desktop.
Load csv file, infer types and save the results in Spark SQL parquet file
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pyspark import SparkContext, SparkConf | |
from pyspark.sql import HiveContext, SQLContext | |
import pandas as pd | |
# sc: Spark context | |
# file_name: csv file_name | |
# table_name: output table name | |
# sep: csv file separator | |
# infer_limit: pandas type inference nb rows | |
def read_csv(sc, file_name, table_name, sep=",", infer_limit=10000): | |
hc = HiveContext(sc) | |
df = pd.read_csv(file_name, sep=sep, nrows=infer_limit) | |
names = df.columns | |
types = [] | |
for i in range(len(names)): | |
tp = names[i] + " " | |
if df.dtypes[i] == "O": | |
tp += "STRING" | |
elif df.dtypes[i] == "int64": | |
tp += "INT" | |
else: | |
tp += "DOUBLE" | |
types.append(tp) | |
hc.sql('drop table if exists %s' %table_name) | |
hc.sql("""CREATE TABLE IF NOT EXISTS %s (%s) row format delimited fields terminated by '%s' | |
LINES TERMINATED BY '\n' tblproperties ('skip.header.line.count'='1')""" %(table_name, ','.join(types), sep)) | |
hc.sql("LOAD DATA LOCAL INPATH '%s' OVERWRITE INTO TABLE %s" %(file_name, table_name)) | |
rdd = hc.sql("SELECT * FROM %s" %table_name) | |
rdd.saveAsParquetFile("%s" %table_name) | |
# to read parquet file | |
# rdd = SQLContext(sc).parquetFile("parquet_dir") | |
# rdd.registerTempTable("mytable") | |
# rdd.sql("select count(*) from mytable") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment