Last active
December 23, 2015 23:29
-
-
Save aausch/6709819 to your computer and use it in GitHub Desktop.
A read-only dictionary, which only contains prime numbers
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# inspired by http://ceasarjames.wordpress.com/2011/07/10/the-quadratic-sieve/ | |
# | |
# Copyright 2013, Alex Ausch | |
# Free to use under attribution license: http://creativecommons.org/licenses/by/2.0/ca/ | |
try: | |
from collections.abc import Mapping | |
except ImportError: | |
from collections import Mapping | |
class PrimeSet(Mapping): | |
"""A PrimeSet object acts like the set of prime numbers: | |
>>> p = PrimeSet() | |
>>> 2 in p | |
True | |
>>> 4 in p | |
False | |
The object sieves for primes as needed. When iterated over, it | |
yields the primes found so far: | |
>>> 30 in p | |
False | |
>>> list(p) | |
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29] | |
""" | |
instance = None | |
def __new__(cls): | |
if cls.instance is None: | |
cls.instance = super(PrimeSet, cls).__new__(cls) | |
return cls.instance | |
def __init__(self): | |
super(PrimeSet, self).__init__() | |
self.prime_map = {2:2} | |
self.previous_max = 2 | |
def __len__(self): | |
return len(self.prime_map) | |
def __contains__(self, key): | |
try: | |
key = int(key) | |
except ValueError: | |
return False | |
if key > self.previous_max: | |
self.find_primes(key) | |
return key in self.prime_map | |
def __setitem__(self, key, value): | |
raise TypeError("'PrimeSet' object doesn't support item assignment") | |
def __delitem__(self, key): | |
raise TypeError("'PrimeSet' object doesn't support item removal") | |
def find_primes(self,n): | |
n = n+1 #want to include n when testing for primes | |
if (n) < self.previous_max: return | |
sieve = range(self.previous_max,n) | |
for x in self.keys(): | |
i = x * ((self.previous_max - 1)//x + 1) | |
while i < n: | |
sieve[i - self.previous_max] = 0 | |
i += x | |
index = self.previous_max | |
for index in range(self.previous_max,int(n ** 0.5)+1,1): | |
if sieve[index-self.previous_max]: | |
for i in range(index ** 2 - self.previous_max, n - self.previous_max, index): | |
sieve[i] = 0 | |
self.previous_max = n | |
for x in sieve: | |
if x: | |
self.prime_map[x] = x | |
def __iter__(self): | |
return iter(self.prime_map) | |
def __getitem__(self,key): | |
try: | |
key = int(key) | |
except: | |
return False | |
if key>= self.previous_max: | |
self.find_primes(key) | |
try: | |
return self.prime_map[key] | |
except: | |
return False |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Revisions based on http://codereview.stackexchange.com/questions/31835/prime-number-dictionary