-
-
Save abcdabcd987/032da38127bdce47a6c9e448e7701986 to your computer and use it in GitHub Desktop.
Partial implementation of "Painting Style Transfer for Head Portraits using Convolutional Neural Networks".
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy.misc import imread, imresize, imsave | |
from scipy.optimize import fmin_l_bfgs_b | |
import numpy as np | |
import time | |
import os | |
import argparse | |
import h5py | |
from keras.models import Sequential | |
from keras.layers.convolutional import Convolution2D, ZeroPadding2D, AveragePooling2D, MaxPooling2D | |
from keras import backend as K | |
parser = argparse.ArgumentParser(description='Neural style transfer with Keras.') | |
parser.add_argument('base_image_path', metavar='base', type=str, | |
help='Path to the image to transform.') | |
parser.add_argument('style_reference_image_path', metavar='ref', type=str, | |
help='Path to the style reference image.') | |
parser.add_argument('result_prefix', metavar='res_prefix', type=str, | |
help='Prefix for the saved results.') | |
parser.add_argument("--image_size", dest="img_size", default=512, type=int, help='Output Image size') | |
parser.add_argument("--content_weight", dest="content_weight", default=0.5, type=float, help="Weight of content") # 0.025 | |
parser.add_argument("--style_weight", dest="style_weight", default=0.5, type=float, help="Weight of content") # 1.0 | |
parser.add_argument("--style_scale", dest="style_scale", default=1.0, type=float, help="Scale the weightage of the style") # 1, 0.5, 2 | |
parser.add_argument("--total_variation_weight", dest="tv_weight", default=1e-5, type=float, help="Total Variation in the Weights") # 1.0 | |
parser.add_argument("--num_iter", dest="num_iter", default=10, type=int, help="Number of iterations") | |
parser.add_argument("--rescale_image", dest="rescale_image", default="True", type=str, help="Rescale image after execution to original dimentions") | |
parser.add_argument("--rescale_method", dest="rescale_method", default="bilinear", type=str, help="Rescale image algorithm") | |
parser.add_argument("--maintain_aspect_ratio", dest="maintain_aspect_ratio", default="True", type=str, help="Maintain aspect ratio of image") | |
parser.add_argument("--content_layer", dest="content_layer", default="conv5_2", type=str, help="Optional 'conv4_2'") | |
parser.add_argument("--init_image", dest="init_image", default="content", type=str, help="Initial image used to generate the final image. Options are 'content' or 'noise") | |
parser.add_argument("--pool_type", dest="pool", default="max", type=str, help='Pooling type. Can be "ave" for average pooling or "max" for max pooling ') | |
parser.add_argument("--g_max", type=float, default=5, help='Clamp - nax') | |
parser.add_argument("--g_min", type=float, default=0.7, help='Clamp - min') | |
parser.add_argument("--gamma", type=int, default=100, help='Gamma weight') | |
args = parser.parse_args() | |
base_image_path = args.base_image_path | |
style_reference_image_path = args.style_reference_image_path | |
result_prefix = args.result_prefix | |
weights_path = r"vgg16_weights.h5" | |
def strToBool(v): | |
return v.lower() in ("true", "yes", "t", "1") | |
rescale_image = strToBool(args.rescale_image) | |
maintain_aspect_ratio = strToBool(args.maintain_aspect_ratio) | |
# these are the weights of the different loss components | |
total_variation_weight = args.tv_weight | |
# dimensions of the generated picture. | |
img_width = img_height = args.img_size | |
assert img_height == img_width, 'Due to the use of the Gram matrix, width and height must match.' | |
img_WIDTH = img_HEIGHT = 0 | |
aspect_ratio = 0 | |
g_max = float(args.g_max) | |
g_min = float(args.g_min) | |
# util function to open, resize and format pictures into appropriate tensors | |
def preprocess_image(image_path, load_dims=False): | |
global img_WIDTH, img_HEIGHT, aspect_ratio | |
img = imread(image_path, mode="RGB") # Prevents crashes due to PNG images (ARGB) | |
if load_dims: | |
img_WIDTH = img.shape[0] | |
img_HEIGHT = img.shape[1] | |
aspect_ratio = img_HEIGHT / img_WIDTH | |
img = imresize(img, (img_width, img_height)) | |
img = img[:, :, ::-1].astype('float64') | |
img[:, :, 0] -= 103.939 | |
img[:, :, 1] -= 116.779 | |
img[:, :, 2] -= 123.68 | |
img = img.transpose((2, 0, 1)) | |
img = np.expand_dims(img, axis=0) | |
return img | |
# util function to convert a tensor into a valid image | |
def deprocess_image(x): | |
x = x.transpose((1, 2, 0)) | |
x[:, :, 0] += 103.939 | |
x[:, :, 1] += 116.779 | |
x[:, :, 2] += 123.68 | |
x = x[:, :, ::-1] | |
x = np.clip(x, 0, 255).astype('uint8') | |
return x | |
# Decide pooling function | |
pooltype = str(args.pool).lower() | |
assert pooltype in ["ave", "max"], 'Pooling argument is wrong. Needs to be either "ave" or "max".' | |
pooltype = 1 if pooltype == "ave" else 0 | |
def pooling_func(): | |
if pooltype == 1: | |
return AveragePooling2D((2, 2), strides=(2, 2)) | |
else: | |
return MaxPooling2D((2, 2), strides=(2, 2)) | |
# get tensor representations of our images | |
base_image = K.variable(preprocess_image(base_image_path, True)) | |
style_reference_image = K.variable(preprocess_image(style_reference_image_path)) | |
# this will contain our generated image | |
combination_image = K.placeholder((1, 3, img_width, img_height)) | |
# combine the 3 images into a single Keras tensor | |
input_tensor = K.concatenate([base_image, | |
style_reference_image, | |
combination_image], axis=0) | |
# build the VGG16 network with our 3 images as input | |
first_layer = ZeroPadding2D((1, 1)) | |
first_layer.set_input(input_tensor, shape=(3, 3, img_width, img_height)) | |
model = Sequential() | |
model.add(first_layer) | |
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_1')) | |
model.add(ZeroPadding2D((1, 1))) | |
model.add(Convolution2D(64, 3, 3, activation='relu')) | |
model.add(pooling_func()) | |
model.add(ZeroPadding2D((1, 1))) | |
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_1')) | |
model.add(ZeroPadding2D((1, 1))) | |
model.add(Convolution2D(128, 3, 3, activation='relu')) | |
model.add(pooling_func()) | |
model.add(ZeroPadding2D((1, 1))) | |
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_1')) | |
model.add(ZeroPadding2D((1, 1))) | |
model.add(Convolution2D(256, 3, 3, activation='relu')) | |
model.add(ZeroPadding2D((1, 1))) | |
model.add(Convolution2D(256, 3, 3, activation='relu')) | |
model.add(pooling_func()) | |
model.add(ZeroPadding2D((1, 1))) | |
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_1')) | |
model.add(ZeroPadding2D((1, 1))) | |
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_2')) | |
model.add(ZeroPadding2D((1, 1))) | |
model.add(Convolution2D(512, 3, 3, activation='relu')) | |
model.add(pooling_func()) | |
model.add(ZeroPadding2D((1, 1))) | |
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_1')) | |
model.add(ZeroPadding2D((1, 1))) | |
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_2')) | |
model.add(ZeroPadding2D((1, 1))) | |
model.add(Convolution2D(512, 3, 3, activation='relu')) | |
model.add(pooling_func()) | |
# load the weights of the VGG16 networks | |
# (trained on ImageNet, won the ILSVRC competition in 2014) | |
# note: when there is a complete match between your model definition | |
# and your weight savefile, you can simply call model.load_weights(filename) | |
assert os.path.exists(weights_path), 'Model weights not found (see "weights_path" variable in script).' | |
f = h5py.File(weights_path) | |
for k in range(f.attrs['nb_layers']): | |
if k >= len(model.layers): | |
# we don't look at the last (fully-connected) layers in the savefile | |
break | |
g = f['layer_{}'.format(k)] | |
weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])] | |
model.layers[k].set_weights(weights) | |
f.close() | |
print('Model loaded.') | |
# get the symbolic outputs of each "key" layer (we gave them unique names). | |
outputs_dict = dict([(layer.name, layer.output) for layer in model.layers]) | |
# compute the neural style loss | |
# first we need to define 4 util functions | |
# the gram matrix of an image tensor (feature-wise outer product) | |
def gram_matrix(x): | |
assert K.ndim(x) == 3 | |
features = K.batch_flatten(x) | |
gram = K.dot(features, K.transpose(features)) | |
return gram | |
# the "style loss" is designed to maintain | |
# the style of the reference image in the generated image. | |
# It is based on the gram matrices (which capture style) of | |
# feature maps from the style reference image | |
# and from the generated image | |
def style_loss(style, combination): | |
assert K.ndim(style) == 3 | |
assert K.ndim(combination) == 3 | |
S = gram_matrix(style) | |
C = gram_matrix(combination) | |
channels = 3 | |
size = img_width * img_height | |
return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2)) | |
# an auxiliary loss function | |
# designed to maintain the "content" of the | |
# base image in the generated image | |
def content_loss(base, style, combination): | |
# Changes from equation 7 (Pg# 5) | |
G = style / (base + 1e-04) | |
G_clamped = K.max(K.min(G, g_max), g_min) # Clamping values | |
Fm = base * G_clamped | |
return K.sum(K.square(combination - Fm)) | |
# the 3rd loss function, total variation loss, | |
# designed to keep the generated image locally coherent | |
def total_variation_loss(x): | |
assert K.ndim(x) == 4 | |
a = K.square(x[:, :, :img_width-1, :img_height-1] - x[:, :, 1:, :img_height-1]) | |
b = K.square(x[:, :, :img_width-1, :img_height-1] - x[:, :, :img_width-1, 1:]) | |
return K.sum(K.pow(a + b, 1.25)) | |
# combine these loss functions into a single scalar | |
loss = K.variable(0.) | |
feature_layers = ['conv3_1', 'conv4_1'] # Only conv3_1 and conv4_1 used in paper (Pg# 5) | |
content_weight = style_weight = 0.5 # Alpha and Beta (content and style weights) are 0.5, Pg# 5 | |
# Calculating content loss | |
for layer_name in feature_layers: | |
layer_features = outputs_dict[layer_name] # 'conv3_1' or 'conv4_1' | |
base_image_features = layer_features[0, :, :, :] | |
style_features = layer_features[1, :, :, :] | |
combination_features = layer_features[2, :, :, :] | |
loss += content_weight * content_loss(base_image_features, style_features, combination_features) | |
# Calculating style loss (in this case, painting style loss) | |
temp_loss = K.variable(0.0) | |
for layer_name in feature_layers: | |
layer_features = outputs_dict[layer_name] | |
style_reference_features = layer_features[1, :, :, :] | |
combination_features = layer_features[2, :, :, :] | |
sl = style_loss(style_reference_features, combination_features) | |
temp_loss += (style_weight / len(feature_layers)) * sl | |
gamma = 100 # Gamma weight defined as 100 in Pg# 5 | |
loss += temp_loss * gamma | |
loss += total_variation_weight * total_variation_loss(combination_image) | |
# get the gradients of the generated image wrt the loss | |
grads = K.gradients(loss, combination_image) | |
outputs = [loss] | |
if type(grads) in {list, tuple}: | |
outputs += grads | |
else: | |
outputs.append(grads) | |
f_outputs = K.function([combination_image], outputs) | |
def eval_loss_and_grads(x): | |
x = x.reshape((1, 3, img_width, img_height)) | |
outs = f_outputs([x]) | |
loss_value = outs[0] | |
if len(outs[1:]) == 1: | |
grad_values = outs[1].flatten().astype('float64') | |
else: | |
grad_values = np.array(outs[1:]).flatten().astype('float64') | |
return loss_value, grad_values | |
# this Evaluator class makes it possible | |
# to compute loss and gradients in one pass | |
# while retrieving them via two separate functions, | |
# "loss" and "grads". This is done because scipy.optimize | |
# requires separate functions for loss and gradients, | |
# but computing them separately would be inefficient. | |
class Evaluator(object): | |
def __init__(self): | |
self.loss_value = None | |
self.grads_values = None | |
def loss(self, x): | |
assert self.loss_value is None | |
loss_value, grad_values = eval_loss_and_grads(x) | |
self.loss_value = loss_value | |
self.grad_values = grad_values | |
return self.loss_value | |
def grads(self, x): | |
assert self.loss_value is not None | |
grad_values = np.copy(self.grad_values) | |
self.loss_value = None | |
self.grad_values = None | |
return grad_values | |
evaluator = Evaluator() | |
# run scipy-based optimization (L-BFGS) over the pixels of the generated image | |
# so as to minimize the neural style loss | |
assert args.init_image in ["content", "noise"] , "init_image must be one of ['content', 'noise']" | |
if "content" in args.init_image: | |
x = preprocess_image(base_image_path, True) | |
else: | |
x = np.random.uniform(0, 255, (1, 3, img_width, img_height)) | |
x[0, 0, :, :] -= 103.939 | |
x[0, 1, :, :] -= 116.779 | |
x[0, 2, :, :] -= 123.68 | |
num_iter = args.num_iter | |
for i in range(num_iter): | |
print('Start of iteration', (i+1)) | |
start_time = time.time() | |
x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), | |
fprime=evaluator.grads, maxfun=20) | |
print('Current loss value:', min_val) | |
# save current generated image | |
img = deprocess_image(x.copy().reshape((3, img_width, img_height))) | |
if (maintain_aspect_ratio) & (not rescale_image): | |
img_ht = int(img_width * aspect_ratio) | |
print("Rescaling Image to (%d, %d)" % (img_width, img_ht)) | |
img = imresize(img, (img_width, img_ht), interp=args.rescale_method) | |
if rescale_image: | |
print("Rescaling Image to (%d, %d)" % (img_WIDTH, img_HEIGHT)) | |
img = imresize(img, (img_WIDTH, img_HEIGHT), interp=args.rescale_method) | |
fname = result_prefix + '_at_iteration_%d.png' % (i+1) | |
imsave(fname, img) | |
end_time = time.time() | |
print('Image saved as', fname) | |
print('Iteration %d completed in %ds' % (i+1, end_time - start_time)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment