I hereby claim:
- I am abesto on github.
- I am abesto (https://keybase.io/abesto) on keybase.
- I have a public key whose fingerprint is F633 DCF7 81E5 A3C8 3010 6CC4 04E1 88BC 5D45 BDEE
To claim this, I am signing this object:
| task dependencyReport { | |
| doLast { | |
| def file = new File("project-dependencies.dot") | |
| file.delete() | |
| file << "digraph {\n" | |
| file << "splines=ortho\n" | |
| rootProject.childProjects.each { item -> | |
| def from = item.value | |
| from.configurations.compile.dependencies | |
| .matching { it in ProjectDependency } |
| import logging | |
| dict(filter(lambda x: x[1], [(name, [h for h in logging.getLogger(name).handlers if 'Stream' in h.__class__.__name__]) for name, logger in logging.Logger.manager.loggerDict.iteritems()])) |
I hereby claim:
To claim this, I am signing this object:
| // in app.js: | |
| ss.api.log = winston.info; | |
| console.log = ss.api.log; |
| import java.util.Collections; | |
| import java.util.Comparator; | |
| import java.util.LinkedList; | |
| import java.util.List; | |
| public class Gy2_1 { | |
| static class Point { | |
| private Integer x, y; | |
| Point(Integer x, Integer y) { |
| log4j.appender.Console.layout.conversionPattern = %d %h %c %p %m using a config from the web%n |
| app.post '/tab', (req, res) -> | |
| redis.incr 'tab', (err, id) -> | |
| return res.send 500, err if err | |
| key = tabKey(id) | |
| json = JSON.stringify {id: id, text: req.body.text} | |
| redis.set key, json, (err) -> | |
| return res.send 500, err if err | |
| redis.rpush tabsListKey, id, (err) -> | |
| return res.send 500, err if err | |
| res.send 201, json |
| function curry() { | |
| exportfun=$1; shift | |
| fun=$1; shift | |
| params=$* | |
| cmd=$"function $exportfun() { | |
| more_params=\$*; | |
| $fun $params \$more_params; | |
| }" | |
| eval $cmd | |
| } |
| /* | |
| A Tour of Go: page 44 | |
| http://tour.golang.org/#44 | |
| Exercise: Loops and Functions | |
| As a simple way to play with functions and loops, implement the square root function using Newton's method. | |
| In this case, Newton's method is to approximate Sqrt(x) by picking a starting point z and then repeating: z - (z*z - x) / (2 * z) |
| -- Could use a few rounds of cleanup... | |
| import Data.Char | |
| import Data.List | |
| dictionary :: [String] | |
| dictionary = [[chr c] | c <- [0 .. 127]] | |
| prefixes :: [String] -> String -> [(Int, String)] | |
| prefixes xs y = [(i, xs !! i) | i <- [0 .. (length xs) -1], xs !! i `isPrefixOf` y] |