-
-
Save abevieiramota/627d5477989f311408de0d7ba9c280bc to your computer and use it in GitHub Desktop.
rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
from sklearn.linear_model import LinearRegression | |
# Create a predictor X | |
X = np.random.default_rng().normal(size=100) | |
# Create a Noise Vector e | |
e = np.random.default_rng().normal(size=100) | |
B_0 = 0.5 | |
B_1 = -0.3 | |
B_2 = 3 | |
B_3 = 0.7 | |
Y = B_0 + B_1 * X + B_2 * (X ** 2) + B_3 * (X ** 3) + e | |
features = np.array([X**i for i in range(1, 11)]).T | |
best_rss_set = [None] | |
best_features_idx = [] | |
features_idx = [i for i in range(features.shape[1])] | |
while features_idx: | |
best_rss = None | |
best_idx = None | |
for feature_idx in features_idx: | |
features_set = features[:, best_features_idx + [feature_idx]] | |
model = LinearRegression().fit(features_set, Y) | |
y_pred = model.predict(features_set) | |
Rss = np.sum((Y - y_pred)**2) | |
# Descobrir melhor RSS e melhor Índice | |
if best_rss == None or Rss < best_rss: | |
best_rss = Rss | |
best_idx = feature_idx | |
# Alimentar a best_rss_set e a best_features_set | |
best_rss_set.append(best_rss) | |
best_features_idx.append(best_idx) | |
features_idx.remove(best_idx) | |
best_rss_set |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment