Skip to content

Instantly share code, notes, and snippets.

@abgoswam
Created August 26, 2018 17:53
Show Gist options
  • Save abgoswam/bf2c8a55814b975e5b96f2f78a02baff to your computer and use it in GitHub Desktop.
Save abgoswam/bf2c8a55814b975e5b96f2f78a02baff to your computer and use it in GitHub Desktop.
# Our application logic will be added here
def cnn_model_fn(features, labels, mode):
"""Model function for CNN."""
# Input Layer
input_layer = tf.reshape(features["x"], [-1, 32, 32, 3], name="input_tensor")
# Convolutional Layer #1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[7, 7],
strides=(2, 2),
padding="valid",
activation=tf.nn.relu,
name="conv1_tensor")
# Dense Layer
pool2_flat = tf.reshape(conv1, [-1, 5408])
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)
# Logits Layer
logits = tf.layers.dense(inputs=dropout, units=10, name="logits_tensor")
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
"classes": tf.argmax(input=logits, axis=1),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by the
# `logging_hook`.
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def main(unused_argv):
# Load training and eval data
#mnist = tf.contrib.learn.datasets.load_dataset("mnist")
#train_data = mnist.train.images # Returns np.array
#train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
#eval_data = mnist.test.images # Returns np.array
#eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
# Create the Estimator
cifar_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="cifar_convnet_model_2")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
print("=============================")
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
batch_size=100,
num_epochs=100,
shuffle=True)
cifar_classifier.train(
input_fn=train_input_fn,
steps=200,
hooks=[logging_hook])
print("++++++++++++++++++++++++++++")
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
num_epochs=1,
shuffle=False)
eval_results = cifar_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
print("##########################")
if __name__ == "__main__":
tf.app.run()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment