Skip to content

Instantly share code, notes, and snippets.

@abhayraw1
Last active April 24, 2020 16:15
Show Gist options
  • Save abhayraw1/71ea2dedf8f343059a4b30e54e5ecc00 to your computer and use it in GitHub Desktop.
Save abhayraw1/71ea2dedf8f343059a4b30e54e5ecc00 to your computer and use it in GitHub Desktop.
Generate Image Dataset of Pendulum-v0
import gym
import pdb
import pickle
import argparse
from utils import *
from memory import *
BIT_DEPTH = 5
def rollout(memory, env):
episode = Episode(memory.device, BIT_DEPTH)
x = env.reset()
for _ in range(env.env._max_episode_steps):
u = env.sample_random_action()
nx, r, d, _ = env.step(u)
episode.append(x, u, r, d)
x = nx
episode.append_last_obs(x)
memory.append(episode)
def main(env_name, path):
env = TorchImageEnvWrapper('Pendulum-v0', BIT_DEPTH)
memory = Memory(2000, None, 50)
for _ in range(2000):
rollout(memory, env)
env.close()
with open(path, 'wb+') as f:
memory = pickle.dump(memory, f)
print('DONE!!!')
print('Thanks. Now move it to Scratch and ping me!! :P')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Visual Dataset Generator')
parser.add_argument('env', type=str, help='Name of Gym Environment.')
parser.add_argument(
'--output', type=str, default='memory.pth', help='Name of output file'
)
args = parser.parse_args()
main(args.env, args.output)
import pdb
import torch
import numpy as np
from utils import *
from collections import deque
from numpy.random import choice
from torch import float32 as F32
from torch.nn.utils.rnn import pad_sequence
class Episode:
def __init__(self, device, bit_depth):
self.device = device
self.bit_depth = bit_depth
self.clear()
@property
def size(self):
return self._size
def clear(self):
self.x = []
self.u = []
self.d = []
self.r = []
self._size = 0
def append(self, x, u, r, d):
self._size += 1
self.x.append(postprocess_img(x.numpy(), self.bit_depth))
self.u.append(u.numpy())
self.r.append(r)
self.d.append(d)
def append_last_obs(self, x):
self.x.append(postprocess_img(x.numpy(), self.bit_depth))
def prepare(self, s=0, e=None):
e = e or self.size
prossx = torch.tensor(self.x[s:e+1], dtype=F32, device=self.device)
preprocess_img(prossx, self.bit_depth),
return (
prossx,
torch.tensor(self.u[s:e], dtype=F32, device=self.device),
torch.tensor(self.r[s:e], dtype=F32, device=self.device),
torch.tensor(self.d[s:e], dtype=F32, device=self.device),
)
class Memory:
def __init__(self, size, device, tracelen):
self.device = device
self._shapes = None
self.tracelen = tracelen
self.data = deque(maxlen=size)
self._empty_batch = None
@property
def size(self):
return len(self.data)
@property
def shapes(self):
return self._shapes
def get_empty_batch(self, batch_size):
if self._empty_batch is None or\
self._empty_batch[0].size(0) != batch_size:
data = []
for i, s in enumerate(self.shapes):
h = self.tracelen + 1 if not i else self.tracelen
data.append(torch.zeros(batch_size, h, *s).to(self.device))
self._empty_batch = data
return [x.clone() for x in self._empty_batch]
def append(self, episode: Episode):
self.data.append(episode)
if self.shapes is None:
# Store the shapes of objects
self._shapes = [a.shape[1:] for a in episode.prepare(e=1)]
def sample(self, batch_size):
episode_idx = choice(self.size, batch_size)
init_st_idx = [choice(self.data[i].size) for i in episode_idx]
data = self.get_empty_batch(batch_size)
# xx, uu, rr, dd = [], [], [], []
seq_lengths = []
try:
for n, (i, s) in enumerate(zip(episode_idx, init_st_idx)):
x, u, r, d = self.data[i].prepare(s, s + self.tracelen)
data[0][n, :x.size(0)] = x
data[1][n, :u.size(0)] = u
data[2][n, :r.size(0)] = r
data[3][n, :d.size(0)] = d
seq_lengths.append(len(d))
return data, seq_lengths
except:
pdb.set_trace()
import sys
import pdb
import cv2
import gym
import torch
import numpy as np
from torchvision.utils import make_grid, save_image
def to_tensor_obs(image):
"""
Converts the input np img to channel first 64x64 dim torch img.
"""
image = cv2.resize(image, (64, 64), interpolation=cv2.INTER_LINEAR)
image = torch.tensor(image, dtype=torch.float32).permute(2, 0, 1)
return image
def postprocess_img(image, depth):
"""
Postprocess an image observation for storage.
From float32 numpy array [-0.5, 0.5] to uint8 numpy array [0, 255])
"""
image = np.floor((image + 0.5) * 2 ** depth)
return np.clip(image * 2**(8 - depth), 0, 2**8 - 1).astype(np.uint8)
def preprocess_img(image, depth):
"""
Preprocesses an observation inplace.
From float32 Tensor [0, 255] to [-0.5, 0.5]
"""
image.div_(2 ** (8 - depth)).floor_().div_(2 ** depth).sub_(0.5)
image.add_(torch.rand_like(image).div_(2 ** depth))
def get_combined_params(*models):
"""
Returns the combine parameter list of all the models given as input.
"""
params = []
for model in models:
params.extend(list(model.parameters()))
return params
def save_frames(target, pred_prior, pred_posterior, name, n_rows=5):
"""
Saves the target images with the generated prior and posterior predictions.
"""
image = torch.cat([target, pred_prior, pred_posterior], dim=3)
save_image(make_grid(image + 0.5, nrow=n_rows), f'{name}.png')
def get_mask(tensor, lengths):
"""
Generates the masks for batches of sequences.
Time should be the first axis.
input:
tensor: the tensor for which to generate the mask [N x T x ...]
lengths: lengths of the seq. [N]
"""
mask = torch.zeros_like(tensor)
for i in range(len(lengths)):
mask[i, :lengths[i]] = 1.
return mask
# def
def apply_model(model, inputs, ignore_dim=None):
pass
class TorchImageEnvWrapper:
"""
Torch Env Wrapper that wraps a gym env and makes interactions using Tensors.
Also returns observations in image form.
"""
def __init__(self, env, bit_depth, observation_shape=None):
self.env = gym.make(env)
self.bit_depth = bit_depth
def reset(self):
self.env.reset()
x = to_tensor_obs(self.env.render(mode='rgb_array'))
preprocess_img(x, self.bit_depth)
return x
def step(self, u):
_, r, d, i = self.env.step(u.detach().numpy())
x = to_tensor_obs(self.env.render(mode='rgb_array'))
preprocess_img(x, self.bit_depth)
return x, r, d, i
def render(self):
self.env.render()
def close(self):
self.env.close()
@property
def observation_size(self):
return (3, 64, 64)
@property
def action_size(self):
return self.env.action_space.shape[0]
def sample_random_action(self):
return torch.tensor(self.env.action_space.sample())
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment