Last active
June 21, 2019 09:17
-
-
Save abhayraw1/b9b530d276a23f953d3fd22a59277496 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torch.autograd import Variable | |
import numpy as np | |
sequence_length = 10 | |
print(sequence_length) | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.gru = nn.GRU(input_size=5,hidden_size=5, num_layers=1, batch_first=True) | |
self.linear = nn.Linear(5,1) | |
def forward(self, x, h0): | |
h0 = h0.permute(1,0,2) | |
out, h = self.gru(x, h0) | |
x = out[:,-1,:] | |
x = self.linear(x) | |
x = torch.sigmoid(x) | |
return x | |
model = Net() | |
model = model.cuda() | |
# h0 = Variable(torch.randn(4,1,5).cuda()) | |
#, requires_grad=True) | |
#optimizer = optim.Adam([h0], lr=0.001) | |
criterion = torch.nn.BCELoss() | |
print("model") | |
#print("model params: {}".format(list(model.parameters()))) | |
data = torch.Tensor( | |
torch.normal( | |
torch.zeros(4, sequence_length, 5), | |
torch.ones(4, sequence_length,5) | |
) | |
) | |
data = Variable(data).cuda().detach().requires_grad_(True) | |
label = torch.from_numpy(np.array([1,0,1,0]).astype('float32')) | |
label = label.cuda() | |
# optimizer = optim.Adam([data], lr=0.001) | |
optimizer = optim.Adam(model.parameters(), lr=0.001) | |
print("data") | |
for epoch in range(1000): | |
h0 = Variable(torch.randn(4,1,5)).cuda() | |
output = model(data, h0) | |
#print(output.shape) | |
#print(output) | |
loss = criterion(output, label) | |
print("loss ", float(loss)) | |
optimizer.zero_grad() | |
loss.backward() | |
print(data.grad, h0.grad) | |
optimizer.step() | |
event = 'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, 1 * len(data), | |
1, | |
100. * 1 / 1, | |
float(loss) / 1) | |
#print(event) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment