Skip to content

Instantly share code, notes, and snippets.

@abhijeet-talaulikar
Last active June 24, 2023 19:51
Show Gist options
  • Save abhijeet-talaulikar/32eee96f33362c92fabe0824894b9583 to your computer and use it in GitHub Desktop.
Save abhijeet-talaulikar/32eee96f33362c92fabe0824894b9583 to your computer and use it in GitHub Desktop.
media_decomp = pd.DataFrame({i:np.array(trace['posterior']["contribution_"+str(i)]).mean(axis=(0,1)) for i in channel_priors.keys()}, index=dates) * media['REVENUE'].mean()
media_roi = pd.concat([
media.drop(['DATE','REVENUE'],axis=1).sum(),
media_decomp.sum()
], axis=1).reset_index()
media_roi.columns = ['media','spend','revenue']
media_roi['ROI'] = (media_roi['revenue'] / media_roi['spend'])
media_roi = media_roi.merge(model, left_on='media', right_on='variable')
media_roi.drop(['variable','alpha','gamma'], axis=1, inplace=True)
media_roi
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment