Last active
June 30, 2023 03:11
-
-
Save abhijeet-talaulikar/e91c5e9ecd9459922c2008c64766582c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def scale(x, y): | |
return x * y.sum() / x.sum() | |
with pm.Model() as mmm: | |
target = media_transformed['REVENUE'] / media_transformed['REVENUE'].mean() | |
media_contributions = [] | |
for channel in channel_priors.keys(): | |
# define coefficient | |
channel_prior = channel_priors[channel] | |
channel_coefficient = pm.TruncatedNormal(f"coefficient_{channel}", mu=channel_prior, sigma=0.0001, lower=0, upper=0.15) | |
# define saturation | |
alpha = pm.Uniform(f"alpha_{channel}", lower=0.5, upper=2) | |
gamma = pm.Uniform(f"gamma_{channel}", lower=0.5, upper=1.5) | |
saturated_media = hill_transform( | |
pt.as_tensor_variable(media_transformed[channel] / media_transformed[channel].mean()), | |
alpha, | |
gamma | |
) | |
scaled_media = scale(saturated_media, target) | |
# contribution | |
channel_contribution = pm.Deterministic(f"contribution_{channel}", channel_coefficient * scaled_media) | |
media_contributions.append(channel_contribution) | |
# controls | |
holiday_coefficient = pm.TruncatedNormal("coefficient_holiday", mu=holiday_prior, sigma=0.0001, lower=0) | |
controls = pm.Deterministic("contribution_holiday", holiday_coefficient * scale(pt.as_tensor_variable(bias['holiday_period']), target)) | |
# trend | |
trend_coefficient = pm.Normal("coefficient_trend", mu=trend_prior, sigma=0.0001) | |
trend = pm.Deterministic("contribution_trend", trend_coefficient * pt.as_tensor_variable(target.shift(1).fillna(method='backfill'))) | |
# seasonality | |
seasonality = [] | |
for i in np.arange(1,d+1): | |
coeff_cos = pm.Normal(f"coefficient_seasonality_cos_{i}", mu=seasonality_prior, sigma=0.0001) | |
coeff_sin = pm.Normal(f"coefficient_seasonality_sin_{i}", mu=seasonality_prior, sigma=0.0001) | |
cos_term = pm.Deterministic(f"contribution_seasonality_cos_{i}", coeff_cos * pt.as_tensor_variable(bias[f"cos_{i}"]) * target.sum()/26) | |
sin_term = pm.Deterministic(f"contribution_seasonality_sin_{i}", coeff_sin * pt.as_tensor_variable(bias[f"sin_{i}"]) * target.sum()/26) | |
seasonality.extend([cos_term, sin_term]) | |
noise = pm.Uniform("sigma", lower=0, upper=0.02) | |
intercept_coefficient = pm.TruncatedNormal("coefficient_intercept", mu=0.5, sigma=0.0001, lower=0) | |
intercept = pm.Deterministic("contribution_intercept", intercept_coefficient * target.mean()) | |
# define likelihood | |
likelihood = pm.Normal("revenue", | |
mu = intercept + trend + sum(seasonality) + sum(media_contributions), | |
sigma = noise, | |
observed=target) | |
# inference | |
trace = pm.sample(tune=1000) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment