Last active
November 11, 2016 14:10
-
-
Save abhilive/6f2ca7fae3a67160add3a8eb890fdbbb to your computer and use it in GitHub Desktop.
Example of kNN implemented from Scratch in Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
5.1,3.5,1.4,0.2,Iris-setosa | |
4.9,3.0,1.4,0.2,Iris-setosa | |
4.7,3.2,1.3,0.2,Iris-setosa | |
4.6,3.1,1.5,0.2,Iris-setosa | |
5.0,3.6,1.4,0.2,Iris-setosa | |
5.4,3.9,1.7,0.4,Iris-setosa | |
4.6,3.4,1.4,0.3,Iris-setosa | |
5.0,3.4,1.5,0.2,Iris-setosa | |
4.4,2.9,1.4,0.2,Iris-setosa | |
4.9,3.1,1.5,0.1,Iris-setosa | |
5.4,3.7,1.5,0.2,Iris-setosa | |
4.8,3.4,1.6,0.2,Iris-setosa | |
4.8,3.0,1.4,0.1,Iris-setosa | |
4.3,3.0,1.1,0.1,Iris-setosa | |
5.8,4.0,1.2,0.2,Iris-setosa | |
5.7,4.4,1.5,0.4,Iris-setosa | |
5.4,3.9,1.3,0.4,Iris-setosa | |
5.1,3.5,1.4,0.3,Iris-setosa | |
5.7,3.8,1.7,0.3,Iris-setosa | |
5.1,3.8,1.5,0.3,Iris-setosa | |
5.4,3.4,1.7,0.2,Iris-setosa | |
5.1,3.7,1.5,0.4,Iris-setosa | |
4.6,3.6,1.0,0.2,Iris-setosa | |
5.1,3.3,1.7,0.5,Iris-setosa | |
4.8,3.4,1.9,0.2,Iris-setosa | |
5.0,3.0,1.6,0.2,Iris-setosa | |
5.0,3.4,1.6,0.4,Iris-setosa | |
5.2,3.5,1.5,0.2,Iris-setosa | |
5.2,3.4,1.4,0.2,Iris-setosa | |
4.7,3.2,1.6,0.2,Iris-setosa | |
4.8,3.1,1.6,0.2,Iris-setosa | |
5.4,3.4,1.5,0.4,Iris-setosa | |
5.2,4.1,1.5,0.1,Iris-setosa | |
5.5,4.2,1.4,0.2,Iris-setosa | |
4.9,3.1,1.5,0.1,Iris-setosa | |
5.0,3.2,1.2,0.2,Iris-setosa | |
5.5,3.5,1.3,0.2,Iris-setosa | |
4.9,3.1,1.5,0.1,Iris-setosa | |
4.4,3.0,1.3,0.2,Iris-setosa | |
5.1,3.4,1.5,0.2,Iris-setosa | |
5.0,3.5,1.3,0.3,Iris-setosa | |
4.5,2.3,1.3,0.3,Iris-setosa | |
4.4,3.2,1.3,0.2,Iris-setosa | |
5.0,3.5,1.6,0.6,Iris-setosa | |
5.1,3.8,1.9,0.4,Iris-setosa | |
4.8,3.0,1.4,0.3,Iris-setosa | |
5.1,3.8,1.6,0.2,Iris-setosa | |
4.6,3.2,1.4,0.2,Iris-setosa | |
5.3,3.7,1.5,0.2,Iris-setosa | |
5.0,3.3,1.4,0.2,Iris-setosa | |
7.0,3.2,4.7,1.4,Iris-versicolor | |
6.4,3.2,4.5,1.5,Iris-versicolor | |
6.9,3.1,4.9,1.5,Iris-versicolor | |
5.5,2.3,4.0,1.3,Iris-versicolor | |
6.5,2.8,4.6,1.5,Iris-versicolor | |
5.7,2.8,4.5,1.3,Iris-versicolor | |
6.3,3.3,4.7,1.6,Iris-versicolor | |
4.9,2.4,3.3,1.0,Iris-versicolor | |
6.6,2.9,4.6,1.3,Iris-versicolor | |
5.2,2.7,3.9,1.4,Iris-versicolor | |
5.0,2.0,3.5,1.0,Iris-versicolor | |
5.9,3.0,4.2,1.5,Iris-versicolor | |
6.0,2.2,4.0,1.0,Iris-versicolor | |
6.1,2.9,4.7,1.4,Iris-versicolor | |
5.6,2.9,3.6,1.3,Iris-versicolor | |
6.7,3.1,4.4,1.4,Iris-versicolor | |
5.6,3.0,4.5,1.5,Iris-versicolor | |
5.8,2.7,4.1,1.0,Iris-versicolor | |
6.2,2.2,4.5,1.5,Iris-versicolor | |
5.6,2.5,3.9,1.1,Iris-versicolor | |
5.9,3.2,4.8,1.8,Iris-versicolor | |
6.1,2.8,4.0,1.3,Iris-versicolor | |
6.3,2.5,4.9,1.5,Iris-versicolor | |
6.1,2.8,4.7,1.2,Iris-versicolor | |
6.4,2.9,4.3,1.3,Iris-versicolor | |
6.6,3.0,4.4,1.4,Iris-versicolor | |
6.8,2.8,4.8,1.4,Iris-versicolor | |
6.7,3.0,5.0,1.7,Iris-versicolor | |
6.0,2.9,4.5,1.5,Iris-versicolor | |
5.7,2.6,3.5,1.0,Iris-versicolor | |
5.5,2.4,3.8,1.1,Iris-versicolor | |
5.5,2.4,3.7,1.0,Iris-versicolor | |
5.8,2.7,3.9,1.2,Iris-versicolor | |
6.0,2.7,5.1,1.6,Iris-versicolor | |
5.4,3.0,4.5,1.5,Iris-versicolor | |
6.0,3.4,4.5,1.6,Iris-versicolor | |
6.7,3.1,4.7,1.5,Iris-versicolor | |
6.3,2.3,4.4,1.3,Iris-versicolor | |
5.6,3.0,4.1,1.3,Iris-versicolor | |
5.5,2.5,4.0,1.3,Iris-versicolor | |
5.5,2.6,4.4,1.2,Iris-versicolor | |
6.1,3.0,4.6,1.4,Iris-versicolor | |
5.8,2.6,4.0,1.2,Iris-versicolor | |
5.0,2.3,3.3,1.0,Iris-versicolor | |
5.6,2.7,4.2,1.3,Iris-versicolor | |
5.7,3.0,4.2,1.2,Iris-versicolor | |
5.7,2.9,4.2,1.3,Iris-versicolor | |
6.2,2.9,4.3,1.3,Iris-versicolor | |
5.1,2.5,3.0,1.1,Iris-versicolor | |
5.7,2.8,4.1,1.3,Iris-versicolor | |
6.3,3.3,6.0,2.5,Iris-virginica | |
5.8,2.7,5.1,1.9,Iris-virginica | |
7.1,3.0,5.9,2.1,Iris-virginica | |
6.3,2.9,5.6,1.8,Iris-virginica | |
6.5,3.0,5.8,2.2,Iris-virginica | |
7.6,3.0,6.6,2.1,Iris-virginica | |
4.9,2.5,4.5,1.7,Iris-virginica | |
7.3,2.9,6.3,1.8,Iris-virginica | |
6.7,2.5,5.8,1.8,Iris-virginica | |
7.2,3.6,6.1,2.5,Iris-virginica | |
6.5,3.2,5.1,2.0,Iris-virginica | |
6.4,2.7,5.3,1.9,Iris-virginica | |
6.8,3.0,5.5,2.1,Iris-virginica | |
5.7,2.5,5.0,2.0,Iris-virginica | |
5.8,2.8,5.1,2.4,Iris-virginica | |
6.4,3.2,5.3,2.3,Iris-virginica | |
6.5,3.0,5.5,1.8,Iris-virginica | |
7.7,3.8,6.7,2.2,Iris-virginica | |
7.7,2.6,6.9,2.3,Iris-virginica | |
6.0,2.2,5.0,1.5,Iris-virginica | |
6.9,3.2,5.7,2.3,Iris-virginica | |
5.6,2.8,4.9,2.0,Iris-virginica | |
7.7,2.8,6.7,2.0,Iris-virginica | |
6.3,2.7,4.9,1.8,Iris-virginica | |
6.7,3.3,5.7,2.1,Iris-virginica | |
7.2,3.2,6.0,1.8,Iris-virginica | |
6.2,2.8,4.8,1.8,Iris-virginica | |
6.1,3.0,4.9,1.8,Iris-virginica | |
6.4,2.8,5.6,2.1,Iris-virginica | |
7.2,3.0,5.8,1.6,Iris-virginica | |
7.4,2.8,6.1,1.9,Iris-virginica | |
7.9,3.8,6.4,2.0,Iris-virginica | |
6.4,2.8,5.6,2.2,Iris-virginica | |
6.3,2.8,5.1,1.5,Iris-virginica | |
6.1,2.6,5.6,1.4,Iris-virginica | |
7.7,3.0,6.1,2.3,Iris-virginica | |
6.3,3.4,5.6,2.4,Iris-virginica | |
6.4,3.1,5.5,1.8,Iris-virginica | |
6.0,3.0,4.8,1.8,Iris-virginica | |
6.9,3.1,5.4,2.1,Iris-virginica | |
6.7,3.1,5.6,2.4,Iris-virginica | |
6.9,3.1,5.1,2.3,Iris-virginica | |
5.8,2.7,5.1,1.9,Iris-virginica | |
6.8,3.2,5.9,2.3,Iris-virginica | |
6.7,3.3,5.7,2.5,Iris-virginica | |
6.7,3.0,5.2,2.3,Iris-virginica | |
6.3,2.5,5.0,1.9,Iris-virginica | |
6.5,3.0,5.2,2.0,Iris-virginica | |
6.2,3.4,5.4,2.3,Iris-virginica | |
5.9,3.0,5.1,1.8,Iris-virginica |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Example of kNN implemented from Scratch in Python | |
import csv | |
import random | |
import math | |
import operator | |
def loadDataset(filename, split, trainingSet=[] , testSet=[]): | |
with open(filename, 'rb') as csvfile: | |
lines = csv.reader(csvfile) | |
dataset = list(lines) | |
for x in range(len(dataset)-1): | |
for y in range(4): | |
dataset[x][y] = float(dataset[x][y]) | |
if random.random() < split: | |
trainingSet.append(dataset[x]) | |
else: | |
testSet.append(dataset[x]) | |
def euclideanDistance(instance1, instance2, length): | |
distance = 0 | |
for x in range(length): | |
distance += pow((instance1[x] - instance2[x]), 2) | |
return math.sqrt(distance) | |
def getNeighbors(trainingSet, testInstance, k): | |
distances = [] | |
length = len(testInstance)-1 | |
for x in range(len(trainingSet)): | |
dist = euclideanDistance(testInstance, trainingSet[x], length) | |
distances.append((trainingSet[x], dist)) | |
distances.sort(key=operator.itemgetter(1)) | |
neighbors = [] | |
for x in range(k): | |
neighbors.append(distances[x][0]) | |
return neighbors | |
def getResponse(neighbors): | |
classVotes = {} | |
for x in range(len(neighbors)): | |
response = neighbors[x][-1] | |
if response in classVotes: | |
classVotes[response] += 1 | |
else: | |
classVotes[response] = 1 | |
sortedVotes = sorted(classVotes.iteritems(), key=operator.itemgetter(1), reverse=True) | |
return sortedVotes[0][0] | |
def getAccuracy(testSet, predictions): | |
correct = 0 | |
for x in range(len(testSet)): | |
if testSet[x][-1] == predictions[x]: | |
correct += 1 | |
return (correct/float(len(testSet))) * 100.0 | |
def main(): | |
# prepare data | |
trainingSet=[] | |
testSet=[] | |
split = 0.67 | |
loadDataset('iris.data', split, trainingSet, testSet) | |
print 'Train set: ' + repr(len(trainingSet)) | |
print 'Test set: ' + repr(len(testSet)) | |
# generate predictions | |
predictions=[] | |
k = 3 | |
for x in range(len(testSet)): | |
neighbors = getNeighbors(trainingSet, testSet[x], k) | |
result = getResponse(neighbors) | |
predictions.append(result) | |
print('> predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1])) | |
accuracy = getAccuracy(testSet, predictions) | |
print('Accuracy: ' + repr(accuracy) + '%') | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Implementation of k-nearest-neighbor algorithm using python.
Ref: http://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/