Created
June 11, 2019 19:57
-
-
Save abhishekkrthakur/b2eaebf18d71d63b6b5d3fa8b0ebf0dd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def train_model(model, | |
data_loader, | |
dataset_size, | |
optimizer, | |
scheduler, | |
num_epochs): | |
criterion = nn.BCEWithLogitsLoss() | |
for epoch in range(num_epochs): | |
print('Epoch {}/{}'.format(epoch, num_epochs - 1)) | |
print('-' * 10) | |
scheduler.step() | |
model.train() | |
running_loss = 0.0 | |
# Iterate over data. | |
for bi, d in enumerate(data_loader): | |
inputs = d["image"] | |
labels = d["labels"] | |
inputs = inputs.to(device, dtype=torch.float) | |
labels = labels.to(device, dtype=torch.float) | |
optimizer.zero_grad() | |
with torch.set_grad_enabled(True): | |
outputs = model(inputs) | |
loss = criterion(outputs, labels) | |
loss.backward() | |
optimizer.step() | |
running_loss += loss.item() * inputs.size(0) | |
epoch_loss = running_loss / dataset_size | |
print('Loss: {:.4f}'.format(epoch_loss)) | |
return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment